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OBJECTIVES

Upon completion of this chapter, you will be able to:

>> >> Convert any number from base 2, base 10, or base 16 to any of the 

other two bases

>> >> Describe the logical operations AND, OR, NOT, XOR, NAND, and NOR

>> >> Use logic gates to diagram simple circuits

>> >> Explain the difference between a bit, a nibble, a byte, and a word

>> >> Give precise mathematical definitions of the terms kilobyte, megabyte,

gigabyte, and terabyte
>> >> Describe the purpose of the major components of a computer system

>> >> Describe the role of the CPU in computer systems

>> >> Contrast and compare various types of semiconductor memories

in terms of their capacity, organization, and access time

>> >> Describe the relationship between the number of memory locations

on a chip, the number of data pins, and the chip's memory capacity

>> >> Contrast and compare PROM, EPROM, UV-EPROM, EEPROM,

Flash memory EPROM, and mask ROM memories

>> >> Contrast and compare SRAM, NV-RAM, and DRAM memories

>> >> List the steps a CPU follows in memory address decoding

>> >> List the three types of buses found in computers and describe the

purpose of each type of bus

>> >> Describe the Peripheral and Memory-mapped I/O buses

>> >> Design decoders for memory and I/O

>> >> List the major components of the CPU and describe the purpose of each

>> >> Understand the Harvard architecture
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To understand the software and hardware of a microcontroller-based system, one

must first master some very basic concepts underlying computer architecture. In this chap-

ter (which in the tradition of digital computers is called Chapter 0), the fundamentals of

numbering and coding systems are presented in Section 0.1. In Section 0.2, an overview

of logic gates is given. The semiconductor memory is discussed in Section 0.3.  In Section

0.4, we examine the bus connection to memory and address decoding. In Section 0.5, we

explore the I/O address decoding. Finally, in the last section, Harvard, and von Neumann

CPU architectures are discussed. Although some readers may have an adequate back-

ground in many of the topics of this chapter, it is recommended that the material be

reviewed, however briefly.

SECTION 0.1: NUMBERING AND CODING SYSTEMS

Whereas human beings use base 10 (decimal) arithmetic, computers use the base 2

(binary) system. In this section we explain how to convert from the decimal system to the

binary system, and vice versa. The convenient representation of binary numbers, called

hexadecimal, also is covered. Finally, the binary format of the alphanumeric code, called

ASCII, is explored. 

Decimal and binary number systems

Although there has been speculation that the origin of the base 10 system is the fact

that human beings have 10 fingers, there is absolutely no speculation about the reason

behind the use of the binary system in computers. The binary system is used in comput-

ers because 1 and 0 represent the two voltage levels of on and off. Whereas in base 10

there are 10 distinct symbols, 0, 1, 2, ..., 9, in base 2 there are only two, 0 and 1, with

which to generate numbers. Base 10 contains digits 0 through 9; binary contains digits 0

and 1 only. These two binary digits, 0 and 1, are commonly referred to as bits. 

Converting from decimal to binary

One method of converting from decimal to binary is to divide the decimal number by

2 repeatedly, keeping track of the remainders. This process continues until the quotient

becomes zero. The remainders are then written in reverse order to obtain the binary num-

ber. This is demonstrated in Example 0-1. 

Convert 2510 to binary.

Solution:

Quotient Remainder
25/2 = 12 1 LSB (least significant bit)
12/2 = 6 0
6/2  = 3 0
3/2  = 1 1
1/2  = 0 1 MSB (most significant bit)

Therefore, 2510 = 110012.

Example 0-1



Converting from binary to decimal

To convert from binary to decimal, it is impor-

tant to understand the concept of weight associated

with each digit position. First, as an analogy, recall

the weight of numbers in the base 10 system, as

shown in the diagram. By the same token, each digit

position of a number in base 2 has a weight associat-

ed with it:

1101012 = Decimal Binary

1 × 20 = 1 × 1 = 1 1
0 × 21 = 0 × 2 = 0 00
1 × 22 = 1 × 4 = 4 100
0 × 23 = 0 × 8 = 0 0000
1 × 24 = 1 × 16 = 16 10000
1 × 25 = 1 × 32 = 32 100000

53 110101

Knowing the weight of each bit in a binary number makes it simple to add them

together to get its decimal equivalent, as shown in Example 0-2. 

Knowing the weight associated with each binary bit position allows one to convert a

decimal number to binary directly instead of going through the process of repeated divi-

sion. This is shown in Example 0-3. 

Hexadecimal system

Base 16, or the hexadecimal system as it is called in computer literature, is used as a

convenient representation of binary numbers. For example, it is much easier for a human

being to represent a string of 0s and 1s such as 100010010110 as its hexadecimal equiva-
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Convert 110012 to decimal.

Solution:

Weight: 16 8 4 2 1

Digits: 1 1 0 0 1

Sum: 16 + 8 + 0 + 0 + 1 = 2510

Example 0-2

Use the concept of weight to convert 3910 to binary.

Solution:

Weight: 32 16 8 4 2 1

1 0 0 1 1 1

32 + 0 + 0 + 4 + 2 + 1 = 39

Therefore, 3910 = 1001112. 

Example 0-3

74068310 = 
3 × 100 =      3
8 × 101 =     80
6 × 102 =    600
0 × 103 =   0000
4 × 104 =  40000
7 × 105 = 700000

740683          



lent of 896H. The binary system has 2 digits, 0 and 1. The base

10 system has 10 digits, 0 through 9. The hexadecimal (base 16)

system has 16 digits. In base 16, the first 10 digits, 0 to 9, are the

same as in decimal, and for the remaining six digits, the letters A,

B, C, D, E, and F are used. Table 0-1 shows the equivalent bina-

ry, decimal, and hexadecimal representations for 0 to 15.

Converting between binary and hex

To represent a binary number as its equivalent hexadecimal

number, start from the right and group 4 bits at a time, replacing

each 4-bit binary number with its hex equivalent shown in Table

0-1. To convert from hex to binary, each hex digit is replaced

with its 4-bit binary equivalent. See Examples 0-4 and 0-5. 

Converting from decimal to hex

Converting from decimal to hex could be approached in two

ways:

1. Convert to binary first and then convert to hex. Example 0-6

shows this method of converting decimal to hex.

2. Convert directly from decimal to hex by repeated division, keeping track of the

remainders. Experimenting with this method is left to the reader.

Converting from hex to decimal

Conversion from hex to decimal can also be approached in two ways:

1. Convert from hex to binary and then to decimal. Example 0-7 demonstrates this

method of converting from hex to decimal.

2. Convert directly from hex to decimal by summing the weight of all digits.
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Table 0-1: Base 16 
Number System

Decimal   Binary Hex

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Convert hex 29B to binary.

Solution:

2 9 B

29B = 0010 1001 1011
Dropping the leading zeros gives 1010011011. 

Example 0-5

Represent binary 100111110101 in hex.

Solution:

First the number is grouped into sets of 4 bits: 1001 1111 0101.

Then each group of 4 bits is replaced with its hex equivalent:

1001 1111 0101

9 F 5

Therefore, 1001111101012 = 9F5 hexadecimal.

Example 0-4



Counting in bases 10, 2, and 16

To show the relationship between all three bases, in Table 0-2 we show the sequence

of numbers from 0 to 31 in decimal, along with the equivalent binary and hex numbers.

Notice in each base that when one more is added to the highest digit, that digit becomes

zero and a 1 is carried to the next-highest digit position. For example, in decimal, 9 + 1 =

0 with a carry to the next-highest position. In binary, 1 + 1 = 0 with a carry; similarly, in

hex, F + 1 = 0 with a carry.
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(a) Convert 4510 to hex. 

32 16 8 4 2 1 First, convert to binary.

1 0 1 1 0 1 32 + 8 + 4 + 1 = 45

4510 = 0010 11012 = 2D hex

(b) Convert 62910 to hex. 

512 256 128 64 32 16 8 4 2 1

1 0 0 1 1 1 0 1 0 1

62910 = (512 + 64 + 32 + 16 + 4 + 1) = 0010 0111 01012 = 275 hex

(c) Convert 171410 to hex. 

1024 512 256 128 64 32 16 8 4 2 1

1 1 0 1 0 1 1 0 0 1 0

171410 = (1024 + 512 + 128 + 32 + 16 + 2) = 0110 1011 00102 = 6B2 hex

Example 0-6

Convert the following hexadecimal numbers to decimal.

(a) 6B216 = 0110 1011 00102

1024 512 256 128 64 32 16 8 4 2 1

1 1 0 1 0 1 1 0 0 1 0

1024 + 512 + 128 + 32 + 16 + 2 = 171410

(b) 9F2D16 = 1001 1111 0010 11012

32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

1          0         0       1        1        1      1     1      0    0    1    0   1  1  0  1

32768 + 4096 + 2048 + 1024 + 512 + 256 + 32 + 8 + 4 + 1 = 40,74910

Example 0-7



Addition of binary and hex numbers

The addition of binary numbers is a very

straightforward process. Table 0-3 shows the addi-

tion of two bits. The discussion of subtraction of

binary numbers is bypassed since all computers use

the addition process to implement subtraction.

Although computers have adder circuitry, there is no

separate circuitry for subtractors. Instead, adders are

used in conjunction with 2’s complement circuitry to

perform subtrac-

tion. In other

words, to imple-

ment “x – y”, the

computer takes

the 2’s comple-

ment of y and

adds it to x. The

concept of 2’s

complement is reviewed next. Example 0-8 shows

the addition of binary numbers.

2’s complement

To get the 2’s complement of a binary number,

invert all the bits and then add 1 to the result.

Inverting the bits is simply a matter of changing all

0s to 1s and 1s to 0s. This is called the 1’s comple-
ment. See Example 0-9.

Addition and subtraction of hex num-

bers

In studying issues related to software and hard-

ware of computers, it is often necessary to add or

subtract hex numbers. Mastery of these techniques

is essential. Hex addition and subtraction are dis-

cussed separately below.
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Table 0-2: Counting in Bases

Decimal Binary Hex

0 00000 0

1 00001 1

2 00010 2

3 00011 3

4 00100 4

5 00101 5

6 00110 6

7 00111 7

8 01000 8

9 01001 9

10 01010 A

11 01011 B

12 01100 C

13 01101 D

14 01110 E

15 01111 F

16 10000 10

17 10001 11

18 10010 12

19 10011 13

20 10100 14

21 10101 15

22 10110 16

23 10111 17

24 11000 18

25 11001 19

26 11010 1A

27 11011 1B

28 11100 1C

29 11101 1D

30 11110 1E

31 11111 1F

Table 0-3: Binary Addition

A + B Carry Sum

0 + 0 0 0

0 + 1 0 1

1 + 0 0 1

1 + 1 1 0

Add the following binary numbers. Check against their decimal equivalents.

Solution:

Binary Decimal
1101 13

+ 1001   9

10110 22

Example 0-8



Addition of hex numbers

This section describes the process of adding hex numbers. Starting with the least sig-

nificant digits, the digits are added together. If the result is less than 16, write that digit as

the sum for that position. If it is greater than 16, subtract 16 from it to get the digit and

carry 1 to the next digit. The best way to explain this is by example, as shown in Example

0-10.

Subtraction of hex numbers

In subtracting two hex numbers, if the second digit is greater than the first, borrow

16 from the preceding digit. See Example 0-11.

ASCII code

The discussion so far has revolved around the representation of number systems.

Because all information in the computer must be represented by 0s and 1s, binary patterns

must be assigned to letters and other characters. In the 1960s a standard representation

called ASCII (American Standard Code for Information Interchange) was established. The

ASCII (pronounced “ask-E”) code assigns binary patterns for numbers 0 to 9, all the let-

ters of the English alphabet, both uppercase (capital) and lowercase, and many control

codes and punctuation marks. The great advantage of this system is that it is used by most

computers, so that information can be shared among computers. The ASCII system uses

CHAPTER 0: INTRODUCTION TO COMPUTING 7

Take the 2’s complement of 10011101.

Solution:

10011101 binary number

01100010 1’s complement

+               1

01100011 2’s complement 

Example 0-9

Perform hex addition: 23D9 + 94BE.

Solution:

23D9 LSD: 9 + 14 = 23 23 – 16 = 7 with a carry 

+ 94BE 1 + 13 + 11 = 25 25 – 16 = 9 with a carry

B897 1 + 3 + 4 = 8

MSD: 2 + 9 = B

Example 0-10

Perform hex subtraction: 59F – 2B8.

Solution:

59F LSD: 8 from 15 = 7

– 2B8 11 from 25 (9 + 16) = 14 (E)

2E7 2 from 4 (5 – 1) = 2 

Example 0-11



a total of 7 bits to represent each code. For

example, 100 0001 is assigned to the upper-

case letter “A” and 110 0001 is for the low-

ercase “a”. Often, a zero is placed in the

most-significant bit position to make it an

8-bit code. Figure 0-1 shows selected

ASCII codes. A complete list of ASCII

codes is given in Appendix F. The use of

ASCII is not only standard for keyboards

used in the United States and many other

countries but also provides a standard for

printing and displaying characters by output devices such as printers and monitors. 

Notice that the pattern of ASCII codes was designed to allow for easy manipulation of

ASCII data. For example, digits 0 through 9 are represented by ASCII codes 30 through 39.

This enables a program to easily convert ASCII to decimal by masking off the “3” in the

upper nibble. Also notice that there is a relationship between the uppercase and lowercase

letters. The uppercase letters are represented by ASCII codes 41 through 5A while lower-

case letters are represented by codes 61 through 7A. Looking at the binary code, the only bit

that is different between the uppercase “A” and lowercase “a” is bit 5. Therefore, conver-

sion between uppercase and lowercase is as simple as changing bit 5 of the ASCII code. 

Review Questions

1. Why do computers use the binary number system instead of the decimal system?

2. Convert 3410 to binary and hex.

3. Convert 1101012 to hex and decimal.

4. Perform binary addition: 101100 + 101.

5. Convert 1011002 to its 2’s complement representation.

6. Add 36BH + F6H.

7. Subtract 36BH – F6H.

8. Write “80x86 CPUs” in its ASCII code (in hex form).

SECTION 0.2: DIGITAL PRIMER

This section gives an overview of digital logic and design.

First, we cover binary logic operations, then we show gates that

perform these functions. Next, logic gates are put together to form

simple digital circuits. Finally, we cover some logic devices com-

monly found in microcontroller interfacing.

Binary logic

As mentioned earlier, computers use the binary number sys-

tem because the two voltage levels can be represented as the two

digits 0 and 1. Signals in digital electronics have two distinct volt-

age levels. For example, a system may define 0 V as logic 0 and

+5 V as logic 1. Figure 0-2 shows this system with the built-in tol-

erances for variations in the voltage. A valid digital signal in this

example should be within either of the two shaded areas. 
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Figure 0-2. Binary Signals

5

4

3

2

1

0 Logic 0

Logic 1

Hex Symbol Hex Symbol
41 A 61 a

42 B 62 b

43 C 63 c

44 D 64 d

... ... ... ...

59 Y 79 y

5A Z 7A z

Figure 0-1. Selected ASCII Codes



Logic gates

Binary logic gates are simple circuits that take one

or more input signals and send out one output signal.

Several of these gates are defined below.

AND gate
The AND gate takes two or more inputs and per-

forms a logic AND on them. See the truth table and dia-

gram of the AND gate. Notice that if both inputs to the

AND gate are 1, the output will be 1. Any other combi-

nation of inputs will give a 0 output. The example shows

two inputs, x and y. Multiple outputs are also possible for

logic gates. In the case of AND, if all inputs are 1, the

output is 1. If any input is 0, the output is 0.

OR gate
The OR logic function will output a 1 if one or more

inputs is 1. If all inputs are 0, then and only then will the

output be 0.

Tri-state buffer
A buffer gate does not change the logic level of the

input. It is used to isolate or amplify the signal.

Inverter
The inverter, also called NOT, outputs the value

opposite to that input to the gate. That is, a 1 input will

give a 0 output, while a 0 input will give a 1 output. 

XOR gate
The XOR gate performs an exclusive-OR operation

on the inputs. Exclusive-OR produces a 1 output if one

(but only one) input is 1. If both operands are 0, the out-

put is 0. Likewise, if both operands are 1, the output is

also 0. Notice from the XOR truth table, that whenever

the two inputs are the same, the output is 0. This function

can be used to compare two bits to see if they are the

same.

NAND and NOR gates
The NAND gate functions like an AND gate with an inverter on the output. It pro-
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Buffer 

X

Control

Y

Logical OR Function

Inputs Output

X Y X OR Y

0 0 0

0 1 1

1 0 1

1 1 1

X

Y
X OR Y

Logical AND Function

Inputs Output

X Y X AND Y

0 0 0

0 1 0

1 0 0

1 1 1

X
Y

X AND Y

Logical Inverter

Input Output

X NOT X

0 1

1 0

X NOT X

Logical XOR Function

Inputs Output

X Y X XOR Y

0 0 0

0 1 1

1 0 1

1 1 0

X

Y
X XOR Y



duces a 0 output when all inputs are 1; otherwise, it pro-

duces a 1 output. The NOR gate functions like an OR

gate with an inverter on the output. It produces a 1 if all

inputs are 0; otherwise, it produces a 0. NAND and NOR

gates are used extensively in digital design because they

are easy and inexpensive to fabricate. Any circuit that

can be designed with AND, OR, XOR, and INVERTER

gates can be implemented using only NAND and NOR

gates. 

Notice in NAND, that if any input is 0, the output is

1. Notice in NOR, that if any input is 1, the output is 0.

Logic design using gates

Next we will show a simple logic design to add two

binary digits. If we add two binary digits there are four

possible outcomes: 

Carry Sum
0 + 0 = 0   0  

0 + 1 = 0   1  

1 + 0 = 0   1  

1 + 1 = 1   0 

Notice that when we add 1 + 1 we get 0

with a carry to the next higher place. We will

need to determine the sum and the carry for this

design. Notice that the sum column above

matches the output for the XOR function, and

that the carry column matches the output for

the AND function. Figure 0-3(a) shows a sim-

ple adder implemented with XOR and AND

gates. Figure 0-3(b) shows the same logic cir-

cuit implemented with AND and OR gates and

inverters. 
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X

Y
Sum

Carry

X

Y

X

Y

X

Y

Sum

Carry

(a) Half-Adder Using XOR and AND

(b) Half-Adder Using AND, OR, Inverters

Figure 0-3. Two Implementations of a Half-Adder

Figure 0-4. Block Diagram of a Half-Adder

Half-

Adder

X Sum

Carry

out

Y

Logical NAND Function

Inputs Output

X Y X NAND Y

0 0 1

0 1 1

1 0 1

1 1 0

X

Y
X NAND Y

Logical NOR Function

Inputs Output

X Y X NOR Y

0 0 1

0 1 0

1 0 0

1 1 0

X

Y
X NOR Y



Figure 0-4 shows a block

diagram of a half-adder. Two

half-adders can be combined to

form an adder that can add three

input digits. This is called a full-

adder. Figure 0-5 shows the logic

diagram of a full-adder, along

with a block diagram that masks

the details of the circuit. Figure

0-6 shows a 3-bit adder using

three full-adders.

Flip-flops

A widely used component

in digital systems is the flip-flop.

Frequently, flip-flops are used to

store data. Figure 0-7 shows the

logic diagram, block diagram,

and truth table for a flip-flop.

The D flip-flop is widely

used to latch data. Notice from

the truth table that a D-FF grabs

the data at the input as the clock

is activated. A D-FF holds the

data as long as the power is on.
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Sum

Sum
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Figure 0-5. Full-Adder Built from a Half-Adder

X

Y
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Figure 0-6. 3-Bit Adder Using Three Full-Adders
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Figure 0-7. D Flip-Flops
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Clk
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Q

Q
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(a) Circuit diagram                                   (b) Block diagram           (c) Truth table



Review Questions

1. The logical operation _____ gives a 1 output when all inputs are 1.

2. The logical operation _____ gives a 1 output when one or more of its inputs is 1.

3. The logical operation _____ is often used to compare two inputs to determine whether

they have the same value.

4. A _____ gate does not change the logic level of the input.

5. Name a common use for flip-flops.

6. An address ______ is used to identify a predetermined binary address. 

SECTION 0.3: SEMICONDUCTOR MEMORY 

In this section we discuss various types of semiconductor memories and their charac-

teristics such as capacity, organization, and access time. Before we embark on the subject

of memory, it will be helpful to give an overview of computer organization and review

some widely used terminology in computer literature. 

Some important terminology

Recall from the discussion above that a bit is a binary

digit that can have the value 0 or 1. A byte is defined as 8 bits.

A nibble is half a byte, or 4 bits. A word is two bytes, or 16

bits. The display is intended to show the relative size of these

units. Of course, they could all be composed of any combina-

tion of zeros and ones.

A kilobyte is 210 bytes, which is 1024 bytes. The abbreviation K is often used to rep-

resent kilobytes.  A megabyte, or meg as some call it, is 220 bytes. That is a little over 1 mil-

lion bytes; it is exactly 1,048,576 bytes. Moving rapidly up the scale in size, a gigabyte is

230 bytes (over 1 billion), and a terabyte is 240 bytes (over 1 trillion). As an example of how

some of these terms are used, suppose that a given computer has 16 megabytes of memory.

That would be 16 × 220, or 24 × 220, which is 224. Therefore 16 megabytes is 224 bytes.

Two types of memory commonly used in microcomputers are RAM, which stands for

“random access memory” (sometimes called read/write memory), and ROM, which stands for

“read-only memory.”  RAM is used by the computer for temporary storage of programs that

it is running. That data is lost when the computer is turned off. For this reason, RAM is some-

times called volatile memory. ROM contains programs and information essential to operation

of the computer. The information in ROM is permanent, cannot be changed by the user, and

is not lost when the power is turned off. Therefore, it is called nonvolatile memory.

Internal organization of computers

The internal working of every computer can be broken down into three parts: CPU

(central processing unit), memory, and I/O (input/output) devices. Figure 0-8 shows a block

diagram of the internal organization of a computer. The function of the CPU is to execute

(process) information stored in memory. The function of I/O devices such as the keyboard

and video monitor is to provide a means of communicating with the CPU. As you will see

in the next section CPU is connected to memory and I/O through strips of wire called a bus. 

Next, we discuss various types of semiconductor memories and their characteristics

such as capacity, organization, and access time. 
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Bit 0
Nibble       0000
Byte           0000 0000
Word 0000 0000 0000 0000



Memory characteristics

Memory capacity
The number of bits that a semiconductor memory chip can store is called chip capac-

ity. It can be in units of Kbits (kilobits), Mbits (megabits), and so on.  This must be dis-

tinguished from the storage capacity of computer systems. While the memory capacity of

a memory IC chip is always given in bits, the memory capacity of a computer system is

given in bytes. For example, an article in a technical journal may state that the 128M chip

has become popular. In that case, it is understood, although it is not mentioned, that 128M

means 128 megabits since the article is referring to an IC memory chip. However, if an

advertisement states that a computer comes with 128M memory, it is understood that

128M means 128 megabytes since it is referring to a computer system. 

Memory organization
Memory chips are organized into a number of locations within the IC.   Each loca-

tion can hold 1 bit, 4 bits, 8 bits, or even 16 bits, depending on how it is designed inter-

nally.  The number of bits that each location within the memory chip can hold is always

equal to the number of data pins on the chip.  How many locations exist inside a memo-

ry chip? That depends on the number of address pins. The number of locations within a

memory IC always equals 2 to the power of the number of

address pins. Therefore, the total number of bits that a mem-

ory chip can store is equal to the number of locations times

the number of data bits per location. To summarize:

1. A memory chip contains 2x locations, where x is the

number of address pins. 

2. Each location contains y bits, where y is the number of

data pins on the chip.

3. The entire chip will contain 2x × y bits, where x is the

number of address pins and y is the number of data pins

on the chip. See Figure 0-9.
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Figure 0-8. Internal Parts of a Computer

Figure 0-9. 2x × y 

y

2
x

0

1

2

...

The memory has x address 

pins and y data pins .



Speed
One of the most important characteristics of a memory chip is

the speed at which its data can be accessed. To access the data, the

address is presented to the address pins, the READ (OE) pin is acti-

vated, and after a certain amount of time has elapsed, the data

shows up at the data pins. The shorter this elapsed time, the better,

and consequently, the more expensive the memory chip. The speed

of the memory chip is commonly referred to as its access time. The

access time of memory chips varies from a few nanoseconds to

hundreds of nanoseconds, depending on the IC technology used in

the design and fabrication process.

The three important memory characteristics of capacity, organ-

ization, and access time will be explored extensively in this chap-

ter. Table 0-4 serves as a reference for the calculation of memory

organization. Examples 0-12 and 0-13 demonstrate these concepts.

ROM (read-only memory)

ROM is a type of memory that does not lose its contents when

the power is turned off. For this reason, ROM is also called non-
volatile memory. There are different types of read-only memory,

such as PROM, EPROM, EEPROM, Flash EPROM, and mask

ROM. Each is explained next.

PROM (programmable ROM) and OTP
PROM refers to the kind of ROM that the user can burn information into. In other

words, PROM is a user-programmable memory. For every bit of the PROM, there exists
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Table 0-4: Powers of 2

x 2x

10 1K

11 2K

12 4K

13 8K

14 16K

15 32K

16 64K

17 128K

18 256K

19 512K

20 1M

21 2M

22 4M

23 8M

24 16M

25 32M

26 64M

A given memory chip has 12 address pins and 4 data pins. Find: 

(a) the organization, and (b) the capacity.

Solution: 

(a) This memory chip has 4,096 locations (212 = 4,096), and each location can hold 4 bits of

data.  This gives an organization of 4,096 × 4, often represented as 4K × 4.

(b) The capacity is equal to 16K bits since there is a total of 4K locations and each location can

hold 4 bits of data.

Example 0-12

A 512K memory chip has 8 pins for data. Find:

(a) the organization, and (b) the number of address pins for this memory chip.

Solution: 

(a) A memory chip with 8 data pins means that each location within the chip can hold 8 bits of

data. To find the number of locations within this memory chip, divide the capacity by the num-

ber of data pins. 512K/8 = 64K; therefore, the organization for this memory chip is 64K × 8. 

(b) The chip has 16 address lines since 216 = 64K.

Example 0-13



a fuse. PROM is programmed by blowing the fuses. If the information burned into PROM

is wrong, that PROM must be discarded since its internal fuses are blown permanently.

For this reason, PROM is also referred to as OTP (one-time programmable). Programming

ROM, also called burning ROM, requires special equipment called a ROM burner or

ROM programmer.

EPROM (erasable programmable ROM) and UV-EPROM
EPROM was invented to allow making changes in the contents of PROM after it is

burned. In EPROM, one can program the memory chip and erase it thousands of times.

This is especially necessary during development of the prototype of a microprocessor-

based project. A widely used EPROM is called UV-EPROM, where UV stands for ultravi-

olet. The only problem with UV-EPROM is that erasing its contents can take up to 20 min-

utes. All UV-EPROM chips have a window through which the programmer can shine ultra-

violet (UV) radiation to erase the chip’s contents. For this reason, EPROM is also referred

to as UV-erasable EPROM or simply UV-EPROM. Figure 0-10 shows the pins for UV-

EPROM chips.

To program a UV-EPROM chip, the following steps must be taken:

1. Its contents must be erased. To erase a chip, remove it from its socket on the system

board and place it in EPROM erasure equipment to expose it to UV radiation for

15–20 minutes.

2. Program the chip. To program a UV-EPROM chip, place it in the ROM burner (pro-

grammer).  To burn code or data into EPROM, the ROM burner uses 12.5 volts or

higher, depending on the EPROM type. This voltage is referred to as VPP in the UV-

EPROM data sheet. 

3. Place the chip back into its socket on the system board.

As can be seen from the above steps, not only is there an EPROM programmer (burn-

er), but there is also separate EPROM erasure equipment.  The main problem, and indeed

the major disadvantage of UV-EPROM, is that it cannot be erased and programmed while

it is in the system board.  To provide a solution to this problem, EEPROM was invented. 
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Notice the patterns of the IC numbers in Table 0-5. For example, part number 27128-

25 refers to UV-EPROM that has a capacity of 128K bits and access time of 250 nanosec-

onds. The capacity of the memory chip is indicated in the part number and the access time

is given with a zero dropped. See Example 0-14. 

In part numbers, C refers to CMOS technology.  Notice that 27XX always refers to

UV-EPROM chips. For a comprehensive list of available memory chips see the JAMECO

(jameco.com) or JDR (jdr.com) catalogs.

EEPROM (electrically erasable programmable ROM)
EEPROM has several advantages over EPROM, such as the fact that its method of

erasure is electrical and therefore instant, as opposed to the 20-minute erasure time

required for UV-EPROM.  In addition, in EEPROM one can select which byte to be

erased, in contrast to UV-EPROM, in which the entire contents of ROM are erased.

However, the main advantage of EEPROM is that one can program and erase its contents

while it is still in the system board. It does not require physical removal of the memory

chip from its socket. In other words, unlike UV-EPROM, EEPROM does not require an

external erasure and programming device. To utilize EEPROM fully, the designer must

incorporate the circuitry to program the EEPROM into the system board.  In general, the

cost per bit for EEPROM is much higher than for UV-EPROM.
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Table 0-5: Some UV-EPROM Chips

Part # Capacity Org. Access Pins VPP 
2716 16K 2K × 8 450 ns 24 25 V
2732 32K 4K × 8 450 ns 24 25 V

2732A-20 32K 4K × 8 200 ns 24 21 V

27C32-1  32K 4K × 8 450 ns 24 12.5 V CMOS

2764-20  64K 8K × 8 200 ns 28 21 V

2764A-20  64K 8K × 8 200 ns 28 12.5 V

27C64-12  64K 8K × 8 120 ns 28 12.5 V CMOS

27128-25  128K 16K × 8 250 ns 28 21 V 

27C128-12  128K 16K × 8 120 ns 28 12.5 V CMOS 

27256-25  256K 32K × 8 250 ns 28 12.5 V 

27C256-15  256K 32K × 8 150 ns 28 12.5 V CMOS 

27512-25  512K 64K × 8 250 ns 28 12.5 V 

27C512-15  512K 64K × 8 150 ns 28 12.5 V CMOS 

27C010-15  1024K 128K × 8 150 ns 32 12.5 V CMOS 

27C020-15  2048K 256K × 8 150 ns 32 12.5 V CMOS 

27C040-15  4096K 512K × 8 150 ns 32 12.5 V CMOS 

For ROM chip 27128, find the number of data and address pins.

Solution:

The 27128 has a capacity of 128K bits. It has 16K × 8 organization (all ROMs have 8 data pins),

which indicates that there are 8 pins for data and 14 pins for address (214 = 16K).

Example 0-14



Flash memory EPROM
Since the early 1990s, Flash EPROM has become a popular user-programmable

memory chip, and for good reasons. First, the erasure of the entire contents takes less

than a second, or one might say in a flash, hence its name, Flash memory. In addition,

the erasure method is electrical, and for this reason it is sometimes referred to as Flash

EEPROM. To avoid confusion, it is commonly called Flash memory. The major differ-

ence between EEPROM and Flash memory is that when Flash memory's contents are

erased, the entire device is erased, in contrast to EEPROM, where one can erase a

desired byte. Although in many Flash memories recently made available the contents

are divided into blocks and the erasure can be done block by block, unlike EEPROM,

Flash memory has no byte erasure option. Because Flash memory can be programmed

while it is in its socket on the system board, it is widely used to upgrade the BIOS ROM

of the PC. Some designers believe that Flash memory will replace the hard disk as a

mass storage medium. This would increase the performance of the computer tremen-

dously, since Flash memory is semiconductor memory with access time in the range of

100 ns compared with disk access time in the range of tens of milliseconds. For this to

happen, Flash memory's program/erase cycles must become infinite, just like hard

disks. Program/erase cycle refers to the number of times that a chip can be erased and

reprogrammed before it becomes unusable. At this time, the program/erase cycle is

100,000 for Flash and EEPROM, 1000 for UV-EPROM, and infinite for RAM and

disks. See Table 0-6 for some sample chips.

Mask ROM
Mask ROM refers to a kind of ROM in which the contents are programmed by the

IC manufacturer. In other words, it is not a user-programmable ROM. The term mask is

used in IC fabrication. Since the process is costly, mask ROM is used when the needed

volume is high (hundreds of thousands) and it is absolutely certain that the contents will

not change. It is common practice to use UV-EPROM or Flash for the development phase

of a project, and only after the code/data have been finalized is the mask version of the

product ordered. The main advantage of mask ROM is its cost, since it is significantly

cheaper than other kinds of ROM, but if an error is found in the data/code, the entire batch

must be thrown away. It must be noted that all ROM memories have 8 bits for data pins;

therefore, the organization is ×8. 
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Table 0-6: Some EEPROM and Flash Chips

EEPROMs

Part No. Capacity Org. Speed Pins VPP

2816A-25 16K 2K × 8 250 ns 24 5 V

2864A    64K 8K × 8 250 ns 28 5 V

28C64A-25 64K 8K × 8 250 ns 28 5 V CMOS

28C256-15 256K 32K × 8 150 ns 28 5 V 

28C256-25  256K 32K × 8 250 ns 28 5 V CMOS 

Flash

Part No. Capacity Org. Speed Pins VPP

28F256-20 256K 32K × 8 200 ns 32 12 V CMOS 

28F010-15  1024K 128K × 8 150 ns 32 12 V CMOS 

28F020-15  2048K 256K × 8 150 ns 32 12 V CMOS 



RAM (random access memory)

RAM memory is called volatile memory since cutting

off the power to the IC results in the loss of data.

Sometimes RAM is also referred to as RAWM (read and

write memory), in contrast to ROM, which cannot be writ-

ten to. There are three types of RAM: static RAM (SRAM),

NV-RAM (nonvolatile RAM), and dynamic RAM

(DRAM). Each is explained separately.   

SRAM (static RAM) 
Storage cells in static RAM memory are made of flip-

flops and therefore do not require refreshing in order to

keep their data. This is in contrast to DRAM, discussed

below. The problem with the use of flip-flops for storage

cells is that each cell requires at least 6 transistors to build,

and the cell holds only 1 bit of data. In recent years, the cells have been made of 4 tran-

sistors, which still is too many. The use of 4-transistor cells plus the use of CMOS tech-

nology has given birth to a high-capacity SRAM, but its capacity is far below DRAM.

Figure 0-11 shows the pin diagram for an SRAM chip. The following is a description of

the 6116 SRAM pins:

A0–A10 are for address inputs, where 11 address lines gives 211 = 2K.

WE (write enable) is for writing data into SRAM (active low).

OE (output enable) is for reading data out of SRAM (active low).

CS (chip select) is used to select the memory chip.

I/O0–I/O7 are for data I/O, where 8-bit data lines give an organization of 2K × 8.

The functional diagram for the 6116 SRAM is given in Figure 0-12.

Figure 0-13 shows the following steps to write data into SRAM.
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Figure 0-12. Functional Block Diagram for 6116 SRAM
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1. Provide the addresses to pins A0–A10.

2. Activate the CS pin.

3. Make WE = 0 while RD = 1.   

4. Provide the data to pins I/O0–I/O7.

5. Make WE = 1 and data will be written into SRAM on the positive edge of the

WE signal. 

The following are steps to read data from SRAM. See Figure 0-14.

1. Provide the addresses to pins A0–A10. This is the start of the access time

(tAA).

2. Activate the CS pin.

3. While WE = 1, a high-to-low pulse on the OE pin will read the data out of the

chip.

NV-RAM (nonvolatile RAM)
Whereas SRAM is volatile, there is a new type of nonvolatile RAM called NV-RAM.

Like other RAMs, it allows the CPU to read and write to it, but when the power is turned

off the contents are not lost. NV-RAM combines the best of RAM and ROM: the read and

write ability of RAM, plus the nonvolatility of ROM. To retain its contents, every NV-

RAM chip internally is made of the following components:
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Figure 0-13. Memory Write Timing for SRAM
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1. It uses extremely power-efficient (very low-power consumption) SRAM cells built

out of CMOS.

2. It uses an internal lithium battery as a backup energy source.

3. It uses an intelligent control circuitry. The main job of this control circuitry is to mon-

itor the VCC pin constantly to detect loss of the external power supply.  If the power

to the VCC pin falls below out-of-tolerance conditions, the control circuitry switches

automatically to its internal power source, the lithium battery. The internal lithium

power source is used to retain the NV-RAM contents only when the external power

source is off. 

It must be emphasized that all three of the components above are incorporated into a

single IC chip, and for this reason nonvolatile RAM is a very expensive type of RAM as

far as cost per bit is concerned. Offsetting the cost, however, is the fact that it can retain

its contents up to ten years after the power has been turned off and allows one to read and

write in exactly the same way as SRAM. Table 0-7 shows some examples of SRAM and

NV-RAM parts. 

DRAM (dynamic RAM) 
Since the early days of the computer, the need for huge, inexpensive read/write mem-

ory has been a major preoccupation of computer designers. In 1970, Intel Corporation

introduced the first dynamic RAM (random access memory). Its density (capacity) was

1024 bits and it used a capacitor to store each bit. Using a capacitor to store data cuts down

the number of transistors needed to build the cell; however, it requires constant refreshing

due to leakage. This is in contrast to SRAM (static RAM), whose individual cells are made

of flip-flops. Since each bit in SRAM uses a single flip-flop, and each flip-flop requires six

transistors, SRAM has much larger memory cells and consequently lower density. The use

of capacitors as storage cells in DRAM results in much smaller net memory cell size.
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Table 0-7: Some SRAM and NV-RAM Chips

SRAM

Part No. Capacity Org. Speed Pins VPP

6116P-1 16K 2K × 8 100 ns 24 CMOS

6116P-2 16K 2K × 8 120 ns 24 CMOS

6116P-3 16K 2K × 8 150 ns 24 CMOS

6116LP-1 16K 2K × 8 100 ns 24 Low-power CMOS

6116LP-2 16K 2K × 8 120 ns 24 Low-power CMOS

6116LP-3 16K 2K × 8 150 ns 24 Low-power CMOS

6264P-10  64K 8K × 8 100 ns 28 CMOS

6264LP-70  64K 8K × 8 70 ns 28 Low-power CMOS

6264LP-12  64K 8K × 8 120 ns 28 Low-power CMOS

62256LP-10  256K 32K × 8 100 ns 28 Low-power CMOS 

62256LP-12  256K 32K × 8 120 ns 28 Low-power CMOS 

NV-RAM from Dallas Semiconductor

Part No. Capacity Org. Speed Pins VPP

DS1220Y-150 16K 2K × 8 150 ns 24 12 V CMOS

DS1225AB-150  64K 8K × 8 150 ns 28 12 V CMOS

DS1230Y-85  256K 32K × 8 85 ns 28 12 V CMOS



The advantages and disadvantages of DRAM memory can be summarized as fol-

lows. The major advantages are high density (capacity), cheaper cost per bit, and lower

power consumption per bit. The disadvantage is that it must be refreshed periodically

because the capacitor cell loses its charge; furthermore, while DRAM is being refreshed,

the data cannot be accessed. This is in contrast to SRAM's flip-flops, which retain data as

long as the power is on, do not need to be refreshed, and whose contents can be accessed

at any time. Since 1970, the capacity of DRAM has exploded. After the 1K-bit (1024) chip

came the 4K-bit in 1973, and then the 16K chip in 1976. The 1980s saw the introduction

of 64K, 256K, and finally 1M and 4M memory chips. The 1990s saw 16M, 64M, 256M,

and the beginning of 1G-bit DRAM chips. In the 2000s, 2G-bit chips are standard, and as

the fabrication process gets smaller, larger memory chips will be rolling off the manufac-

turing line. Keep in mind that when talking about IC memory chips, the capacity is always

assumed to be in bits. Therefore, a 1M chip means a 1-megabit chip and a 256K chip

means a 256K-bit memory chip. However, when talking about the memory of a comput-

er system, it is always assumed to be in bytes.   

Packaging issue in DRAM
In DRAM there is a problem of packing a large number of cells into a single chip

with the normal number of pins assigned to addresses. For example, a 64K-bit chip

(64K × 1) must have 16 address lines and 1 data line, requiring 16 pins to send in the

address if the conventional method is used. This is in addition to VCC power, ground, and

read/write control pins. Using the conventional method of data access, the large number

of pins defeats the purpose of high density and small packaging, so dearly cherished by

IC designers. Therefore, to reduce the number of pins needed for addresses, multiplex-

ing/demultiplexing is used. The method used is to split the address in half and send in each

half of the address through the same pins, thereby requiring fewer address pins. Internally,

the DRAM structure is divided into a square of rows and columns. The first half of the

address is called the row and the second half is called the column. For example, in the case

of DRAM of 64K × 1 organization, the first half of the address is sent in through the 8

pins A0–A7, and by activating RAS (row address strobe), the internal latches inside

DRAM grab the first half of the address. After that, the second half of the address is sent

in through the same pins, and by activating CAS (column address strobe), the internal

latches inside DRAM latch the second half of the address. This results in using 8 pins for
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addresses plus RAS and CAS, for a total of 10 pins, instead of the 16 pins that would be

required without multiplexing. To access a bit of data from DRAM, both row and column

addresses must be provided. For this concept to work, there must be a 2-by-1 multiplexer

outside the DRAM circuitry and a demultiplexer inside every DRAM chip. Due to the

complexities associated with DRAM interfacing (RAS, CAS, the need for multiplexer and

refreshing circuitry), some DRAM controllers are designed to make DRAM interfacing

much easier. However, many small microcontroller-based projects that do not require

much RAM (usually less than 64K bytes) use SRAM of types EEPROM and NV-RAM,

instead of DRAM.

DRAM organization
In the discussion of ROM, we noted that all of these chips have 8 pins for data. This

is not the case for DRAM memory chips, which can have ×1, ×4, ×8, or ×16 organiza-

tions. See Example 0-15 and Table 0-8.

In memory chips, the data pins are also called I/O. In some DRAMs there are sepa-

rate Din and Dout pins. Figure 0-15 shows a 256K × 1 DRAM chip with pins A0–A8 for

address, RAS and CAS, WE (write enable), and data in and data out, as well as power and

ground.

Review Questions

1. How many bytes is 24 kilobytes?

2. What does “RAM” stand for? How is it used in computer systems?

3. What does “ROM” stand for? How is it used in computer systems?

4. Why is RAM called volatile memory?

5. List the three major components of a computer system.
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Table 0-8: Some DRAMs 

Part No. Speed Capacity Org. Pins

4164-15 150 ns 64K 64K × 1 16

41464-8 80 ns 256K 64K × 4 18

41256-15 150 ns 256K 256K × 1 16

41256-6   60 ns 256K 256K × 1 16

414256-10 100 ns 1M 256K × 4 20

511000P-8 80 ns 1M 1M × 1 18

514100-7  70 ns 4M 4M × 1 20

Discuss the number of pins set aside for addresses in each of the following memory chips.

(a) 16K × 4 DRAM (b) 16K × 4 SRAM

Solution:

Since 214 = 16K:

(a) For DRAM we have 7 pins (A0–A6) for the address pins and 2 pins for RAS and CAS.

(b) For SRAM we have 14 pins for address and no pins for RAS and CAS since they are asso-

ciated only with DRAM. In both cases we have 4 pins for the data bus.

Example 0-15



6. What does “CPU” stand for? Explain its function in a computer.

7. The speed of semiconductor memory is in the range of 

(a) microseconds (b) milliseconds 

(c) nanoseconds (d) picoseconds

8. Find the organization and chip capacity for each ROM with the indicated number of

address and data pins. 

(a) 14 address, 8 data    (b) 16 address, 8 data  (c) 12 address, 8 data

9. Find the organization and chip capacity for each RAM with the indicated number of

address and data pins. 

(a) 11 address, 1 data SRAM (b) 13 address, 4 data SRAM  

(c) 17 address, 8 data SRAM  (d) 8 address, 4 data DRAM 

(e) 9 address, 1 data DRAM (f) 9 address, 4 data DRAM

10. Find the capacity and number of pins set aside for address and data for memory chips

with the following organizations.

(a) 16K × 4 SRAM (b) 32K × 8 EPROM        (c) 1M × 1 DRAM 

(d) 256K × 4 SRAM (e) 64K × 8 EEPROM      (f) 1M × 4 DRAM

11. Which of the following is (are) volatile memory? 

(a) EEPROM       (b) SRAM       (c) DRAM       (d) NV-RAM

SECTION 0.4: BUS DESIGNING AND ADDRESS DECODING 

In this section we show how the CPU accesses different parts of the computer using

the bus. Then we demonstrate how to connect I/O and memory to computer.  

Bus designing

In computers, the CPU needs to send/receive data to/from memory and I/O.

Connecting the devices (memory or I/O) to the CPU with unique wires considerably

increases the number of CPU pins; therefore, the CPU is connected to memory and I/O

through shared strips of wire called the bus. A computer bus allows information to be car-

ried from place to place just as a street allows cars to carry people from place to place, as

shown in Figure 0-16. In every computer there are three types of buses: address bus, data

bus, and control bus. 
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Figure 0-16. Internal Organization of a Computer
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Consider a conference room: each chair has a unique number; when the chairman

wants to speak to a specific person, the chairman can address him using his chair number.

Similarly, in a computer a unique address is assigned to each device (memory or I/O); no

two devices are allowed to have the same address. The CPU puts the address (in binary,

of course) on the address bus. Then the CPU uses the data bus either to get data from that

device or to send data to it. The control bus is used to provide read or write signals to the

device to indicate if the CPU is asking for information or sending information. 

Of the three buses, the address bus and data bus determine the capability of a given CPU.

More about the data bus
Because data buses are used to carry information in and out of a CPU, the more data

buses available, the better the CPU. If one thinks of data buses as highway lanes, it is clear

that more lanes provide a better pathway between the CPU and its external devices (such

as printers, RAM, ROM, etc.; see Figure 0-17). By the same token, that increase in the

number of lanes increases the cost of construction. More data buses mean a more expen-

sive CPU and computer. The average size of data buses in CPUs varies between 8 and 64

bits. Early personal computers such as Apple 2 used an 8-bit data bus, while supercom-

puters such as Cray used a 64-bit data bus. Data buses are bidirectional because the CPU

must use them either to receive or to send data. The processing power of a computer is

related to the size of its buses in that an 8-bit bus can send out one byte at a time, but a

16-bit bus can send out two bytes at a time, which is twice as fast.

More about the address bus
Because the address bus is used to identify the devices and memory connected to the

CPU, the more address buses available, the larger the number of devices that can be

addressed. In other words, the number of address buses for a CPU determines the number

of locations with which it can communicate. The number of locations is always equal to

2x, where x is the number of address lines, regardless of the size of the data bus. For exam-

ple, a CPU with 16 address lines can provide a total of 65,536 (216) or 64K of address-

able memory. Each location can have a maximum of 1 byte of data. This is because all

general-purpose microprocessor CPUs are what is called byte addressable. As another

example, the IBM PC AT uses a CPU with 24 address lines and 16 data lines. Thus, the

total accessible memory is 16 megabytes (224 = 16 megabytes). In this example there

would be 224 locations, and because each location is one byte, there would be 16

megabytes of memory. The address bus is a unidirectional bus, which means that the CPU
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Figure 0-17. A Simple System Using Peripheral I/O
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uses the address bus only to send out addresses. To summarize: The total number of mem-

ory locations addressable by a given CPU is always equal to 2x where x is the number of

address bits, regardless of the size of the data bus.

More about the address bus
In some computers, there are separate control signals for I/O and memory. For exam-

ple, in x86 PCs, the control bus has the following signals: MEMR (memory read),

MEMW (memory write), IOR (IO read), and IOW (IOW). To read from memory, the CPU

enables MEMR; in order to read from I/O, CPU activates the IOR; and so on. In these

computers the CPU has separate instructions for accessing I/O and memory. In Figure 0-

17, you see a sample system with its control signals.

In this system for example, when the CPU wants to store 50 into address 15 of mem-

ory, it passes through the following steps:

1. The CPU puts 15 on the address bus, and 50 on the data bus.

2. The CPU activates MEMW. This indicates that the CPU wants to write to memo-

ry; as a result, data is stored in memory.

To look at another example, when the CPU wants to get data from an I/O device

whose address is 40, the following takes place: 

1. The CPU puts 40 on the address bus 

2. The CPU activates the IOR. This indicates that the CPU wants to get data from I/O

with address 40. In response, the device whose address is 40 puts data on the data bus.

CPU and its relation to RAM and ROM
For the CPU to process information, the data must be stored in RAM or ROM. The

function of ROM in computers is to provide information that is fixed and permanent. This

is information such as tables for character patterns to be displayed on the video monitor,

or programs that are essential to the working of the computer, such as programs for test-

ing and finding the total amount of RAM installed on the system, or for displaying infor-

mation on the video monitor. In contrast, RAM stores temporary information that can

change with time, such as various versions of the operating system and application pack-

ages such as word processing or tax calculation packages. These programs are loaded

from the hard drive into RAM to be processed by the CPU. The CPU cannot get the infor-

mation from the disk directly because the disk is too slow. In other words, the CPU first

seeks the information to be processed from RAM (or ROM). Only if the data is not there

does the CPU seek it from a mass storage device such as a disk, and then it transfers the

information to RAM. For this reason, RAM and ROM are sometimes referred to as pri-
mary memory and disks are called secondary memory.

Memory address decoding 

Next we discuss address decoding. The CPU provides the address of the data desired,

but it is the job of the decoding circuitry to locate the selected memory block. To explore

the concept of decoding circuitry, we look at various methods used in decoding the

addresses. In this discussion we use SRAM or ROM for the sake of simplicity.   

Memory chips have one or more pins called CS (chip select), which must be activat-

ed for the memory's contents to be accessed. Sometimes the chip select is also referred to

as chip enable (CE). In connecting a memory chip to the CPU, note the following points.

1. The data bus of the CPU is connected directly to the data pins of the memory chip. 

2. Control signals MEMR (memory read) and MEMW (memory write) from the CPU
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are connected to the OE (output enable) and WE (write enable) pins of the memory

chip, respectively.

3. In the case of the address buses, while the lower bits of the addresses from the CPU

go directly to the memory chip address pins, the upper ones are used to activate the

CS pin of the memory chip. It is the CS pin that along with RD/WR allows the flow

of data in or out of the memory chip. No data can be written into or read from the

memory chip unless CS is activated. 

As can be seen from the data sheets of SRAM and ROM, the CS input of a memory

chip is normally active low and is activated by the output of the memory decoder.

Normally memories are divided into blocks, and the output of the decoder selects a given

memory block. There are three ways to generate a memory block selector: (a) using sim-

ple logic gates, (b) using the 74LS138, or (c) using programmable logics such as CPLD

and FPGA. Each method is described below. 

Simple logic gate address decoder
The simplest method of constructing decoding circuitry is the use of a NAND gate.

The output of a NAND gate is active low, and the CS pin is also active low, which makes

them a perfect match. In cases where the CS input is active high, an AND gate must be

used. Using a combination of NAND gates and inverters, one can decode any address

range. An example of this is shown in Figure 0-18, which shows that A15–A12 must be

0011 in order to select the chip. This results in the assignment of addresses 3000H to

3FFFH to this memory chip. When the address is in the range, the output of the NAND

gate is low, and the CS pin is also low; this makes the memory active.

In this example, we can omit the NAND gate and connect the CS chip directly to the

ground, as shown in Figure 0-19. Memory is connected to the system without using any

logic gates which creates what are called aliases: the same device with multiple address-

es. For example, in this system, the first location of memory has 16 different addresses:

0000H, 1000H, 2000H, ..., F00H. All of the above addresses refer to the same location of

memory since some bits of address bus (A12 to A15) are not considered in address decod-

ing. 

In some cases we cannot omit the logic gates (e.g. whenever there is more than one
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Figure 0-18. Logic Gate as Decoder
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memory chip). See Figure  0-20. In this system, four 8K × 8 memories are used together

to provide a 32K × 8 memory. The data pins of memories are connected to the data bus.

The lower bits of the addresses from the CPU go directly to the memory chip address pins

while the upper ones are used to activate the CS

pin of the proper memory chip. 

Table 0-9 shows the address range

assigned to each memory chip in Figure 0-20.

In this example the memories are distinct-

ed from each other by A13 and A14; while

decoding A15 prevents aliasing. In other words,
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Figure 0-19. Connecting Memory Directly to the CPU
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Figure 0-20. Connecting Four Memory Chips to the CPU
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Table 0-9: Memory Map of System 

Address Range 

0000H–1FFFH RAM 0

2000H–3FFFH RAM 1

4000H–5FFFH RAM 2

6000H–7FFFH RAM 3

8000H–FFFFH Not used



the above circuit can be simplified by omitting A15 and using a 2-input ANDs to decode

A13 and A14, but this creates aliases.

Generally speaking, we can design sim-

pler circuits by using partial decoding; howev-

er, in systems which need to be expandable,

we should prevent aliasing by using all

address pins; otherwise, we will not be able to

add extra memories in the future.

Next, we learn to use a decoder instead of

logic gates.

Using the 74LS138 3-8 decoder
This used to be one of the most widely

used address decoders. The 3 inputs A, B, and

C generate 8 active-low outputs Y0–Y7. See

Figure 0-21. Each Y output is connected to CS

of a memory chip, allowing control of 8 mem-

ory blocks by a single 74LS138.  In the

74LS138, where A, B, and C select which out-

put is activated, there are three additional

inputs, G2A, G2B, and G1. G2A and G2B are

both active low, and G1 is active high.  If any

one of the inputs G1, G2A, or G2B is not con-

nected to an address signal (sometimes they

are connected to a control signal), they must

be activated permanently by either VCC or

ground, depending on the activation level. 

Example 0-16 shows the design and the

address range calculation for the 74LS138

decoder. 

Example 0-17 shows how to decode an

address using the 74LS138.
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Figure 0-21. 74LS138 Decoder
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Looking at the design in Figure 0-22, find the address range for the following:

(a) Y4,  (b) Y2, and  (c) Y7.

Solution: 

(a) The address range for Y4 is calculated as follows.

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
0   1   0   0  0   0  0  0  0  0  0  0  0  0  0  0 
0   1   0   0  1   1  1  1  1  1  1  1  1  1  1  1

The above shows that the range for Y4 is 4000H to 4FFFH. In Figure 0-22, notice that A15 must

be 0 for the decoder to be activated. Y4 will be selected when A14 A13 A12 = 100 (4 in bina-

ry). The remaining A11–A0 will be 0 for the lowest address and 1 for the highest address. 

(b) The address range for Y2 is 2000H to 2FFFH.

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
0   0   1   0  0   0  0  0  0  0  0  0  0  0  0  0 
0   0   1   0  1   1  1  1  1  1  1  1  1  1  1  1

(c) The address range for Y7 is 7000H to 7FFFH.

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4  A3 A2 A1 A0
0   1   1   1  0   0  0  0  0  0  0  0  0  0  0  0 
0   1   1   1  1   1  1  1  1  1  1  1  1  1  1  1

Example 0-16

Redesign the system drawn in Figure 0-20 using 74LS138. 

Solution:

Example 0-17
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Using programmable logic as an address decoder
Other widely used decoders are programmable logic chips such as PAL, GAL, and

FPGA chips. One disadvantage of these chips is that they require PAL/GAL/FPGA soft-

ware and a burner (programmer), whereas the 74LS138 needs neither of these. The advan-

tage of these chips is that they can be programmed for any combination of address ranges,

and so are much more versatile. This plus the fact that PAL/GAL/FPGA chips have 10 or

more inputs (in contrast to 6 in the 74138) means that they can accommodate more

address inputs.

Review Questions

1. List the three types of buses found in computer systems and state briefly the purpose

of each type of bus.

2. State which of the following is unidirectional and which is bidirectional:

(a) data bus   (b) address bus 

3. If an address bus for a given computer has 16 lines, what is the maximum amount of

memory it can access (Each memory location is 8-bit)?

4. A given memory block uses addresses 4000H–7FFFH. How many kilobytes is this

memory block?

5. The 74138 is a(n) _____ by _____ decoder.

6. In the 74138 give the status of G2A and G2B for the chip to be enabled.

7. In the 74138 give the status of G1 for the chip to be enabled.

8. In Figure 0-22, what is the range of addresses assigned to Y5?

SECTION 0.5: I/O ADDRESS DECODING AND DESIGN

In this section, we show the design of simple I/O ports using TTL logic gates

74LS373 and 74LS244.  For the purpose of clarity we use simple logic gates such as AND

and inverter gates for decoders. The concept of address bus decoding for I/O instructions

is exactly the same as for memory. The following are the steps:

1. The control signals IOR and IOW are used along with the decoder. (In memory

mapped I/O, RD and WR signals are used.)

2. The address bus is decoded. 

Using the 74LS373 in an output port design
In every computer, whenever data is sent out by the CPU via the data bus, the data

must be latched by the receiving device. While memories have an internal latch to grab

the data, a latching system must be designed for simple I/O ports. The 74LS373 can be

used for this purpose. Notice in Figure 0-25 that in order to make the 74LS373 work as a

latch, the OC pin must be grounded. For an output latch, it is common to AND the output

of the address decoder with the control signal IOW to provide the latching action as shown

in Figures 0-23 and 0-24.

Input port design using the 74LS244
Likewise, when data is coming in by way of a data bus, it must come in through a

three-state buffer. This is referred to as tristated, which comes from the term tri-state

buffer 
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Figure 0-23. Design for Output Port Address 99H. 
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As was the case for memory chips, such a tri-state buffer is internal and therefore

invisible. For the simple input ports we use the 74LS244 chip. See Figure 0-26 for the

internal circuitry of the 74LS244.  In Figure 0-26, notice that since 1G and 2G each con-

trol only 4 bits of the 74LS244, they both must be activated for the 8-bit input. 

Examine Figure 0-27 to see the use of the 74LS244 as an entry port to the system

data bus. Notice in Figures 0-27 and 0-28 how the address decoder and the IOR control

signal together activate the tri-state input. 

The 74LS244 not only plays the role of buffer, but also provides the incoming data

with sufficient driving capability to travel all the way to the CPU. Indeed, the 74LS244

chip is widely used for buffering and providing high driving capability for unidirectional

buses. In bidirectional buses the 74LS245 can be used.

In Examples 0-18 and 0-19 you see I/Os which are connected to a system.

Absolute vs. linear select address decoding

In decoding addresses, either all of them or a selected number of them are decoded.

If all the address lines are decoded, it is called absolute decoding. If only selected address

pins are used for decoding, it is called linear select decoding.  Linear select is cheaper,

since the less input there is, the fewer the gates needed for decoding. The disadvantage is

that it creates what are called aliases, the same port with multiple addresses. In cases
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Figure 0-27. Design for Input Port Address 9FH 
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where linear select is used, we must document all devices addresses in the system map

(memory and I/O map) thoroughly.

Figure 0-29 shows an output circuit which is similar to Example 0-18 but

decodes just A0 to A10. This output circuit has 32 aliases including 029EH, 069EH,

..., FE9EH. As you see, using linear decoding results in simpler circuits but makes

aliases and wastes the address space.
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Using 74LS373 provide an output port for the system shown in Figure 0-17. Assign address

029EH to the device.

Solution:

Example 0-18
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Using a 74LS244 connect 8 switches to the bus of a system. Assign address 0401H to the

input device.

Solution:

Example 0-19
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Peripheral I/O vs. Memory-mapped I/O
Communicating with I/O devices using separate control signals for memory and I/O

is referred to as peripheral I/O. Some designers also refer to it as isolated I/O. However,

in many computers and microcontrollers there are not separate control signals to distin-

guish I/O from memory. The addresses of I/Os and memory are assigned so that they do

not overlap with each other. In these computers I/Os are accessed as if they are parts of

memory. This kind of bus is called memory-mapped I/O. Figure 0-30 shows a simple sys-

tem designed by memory-mapped I/O. 

The following are the differences between peripheral I/O and memory-mapped I/O

for a system with 16 address (A0-A15) pins:

1. In peripheral I/O special I/O (Input and Output) instructions are used to access I/O

devices. However, in memory-mapped I/O, we must use instructions that access mem-

ory locations to access the I/O ports instead of Input and Output instructions. In that

way, there is no difference between memory locations and I/O ports.

2. In memory-mapped I/O circuit interfacing, control signals RD and WR are used to

access both I/O and memory devices. This is in contrast to peripheral I/O, in which

IOR and IOW are used

3. One major and severe disadvantage of memory-mapped I/O is that it uses memory

address space, which could lead to memory space fragmentation. 

4. In memory-mapped I/O, the entire address must be decoded. Otherwise, the I/O alias-

es overlap the memory space. This is in contrast to peripheral I/O, in which linear
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Figure 0-29. Linear Address Decoding
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decoding can be used. This makes decoding circuitry for memory-mapped I/O more

expensive.

In Examples 0-20 and 0-21 you see input and output circuits for a memory-mapped

I/O system.
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Using a 74LS373, design an output port for a memory mapped I/O system. Assign address

029EH to the device.

Solution:

Example 0-20
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Using 74LS244 connect an 8-bit switch to a memory mapped I/O system. Assign address

0401H to the device.

Solution:

Example 0-21
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Review Questions

1. Designers use a ____________ (latch, tri-state buffer) for output and a ___________

(latch, tri-state buffer) for input.

2. Why do we use latches in I/O design?

3. To use the 74LS373 as a latch, OC must be set to ______ permanently.

4. In memory-mapped I/O, which signal is used to select the (a) output, and (b) input

devices?

SECTION 0.6: CPU ARCHITECTURE 

In this section we will examine the inside of a CPU. Then, we will compare the

Harvard and von Neumann architectures.  

Inside CPU

A program stored in memory provides instructions to the CPU to perform an action.

The action can simply be adding data such as payroll data or controlling a machine such

as a robot. The function of the CPU is to fetch these instructions from memory and exe-

cute them. See Figure 0-31. To perform the actions of fetch and execute, all CPUs are

equipped with resources such as the following:

1. Foremost among the resources at the disposal of the CPU are a number of registers.

The CPU uses registers to store information temporarily. The information could be

two values to be processed, or the address of the value needed to be fetched from

memory. Registers inside the CPU can be 8-bit, 16-bit, 32-bit, or even 64-bit regis-

ters, depending on the CPU. In general, the more and bigger the registers, the better
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Figure 0-31. Internal Block Diagram of a CPU

ALU
Flags

Program Counter

Register A

Register B

Register C

Register D

Instruction Register

Instruction 

decoder, timing,

and control

A
d
d
ress B

u
s

C
o
n
tro

l B
u
ses

D
ata B

u
s

Internal

buses



the CPU. The disadvantage of more and bigger registers is the increased cost of such

a CPU.

2. The CPU also has what is called the ALU (arithmetic/logic unit). The ALU section of

the CPU is responsible for performing arithmetic functions such as add, subtract, mul-

tiply, and divide, and logic functions such as AND, OR, and NOT.

3. Every CPU has what is called a program counter. The function of the program count-

er is to point to the address of the next instruction to be executed. As each instruction

is executed, the program counter is incremented to point to the address of the next

instruction to be executed. The contents of the program counter are placed on the

address bus to find and fetch the desired instruction. In the IBM PC, the program

counter is a register called IP, or the instruction pointer.

4. The function of the instruction decoder is to interpret the instruction fetched into the

CPU. One can think of the instruction decoder as a kind of dictionary, storing the

meaning of each instruction and what steps the CPU should take upon receiving a

given instruction. Just as a dictionary requires more pages the more words it defines,

a CPU capable of understanding more instructions requires more transistors to design. 

Internal working of CPUs

Figure 0-32 shows the steps that the

CPU goes through to execute an instruc-

tion.

To demonstrate some of the concepts

discussed above, a step-by-step analysis of

the process a CPU goes through to add

three numbers is given next. Assume that

an imaginary CPU has registers called A,

B, C, and D. It has an 8-bit data bus and a

16-bit address bus. Therefore, the CPU can

access memory from addresses 0000 to

FFFFH (for a total of 10000H locations). 

The action to be performed by the

CPU is to put hexadecimal value 21 into

register A, and then add to register A the

values 42H and 12H. Assume that the code

for the CPU to move a value to register A

is 1011 0000 (B0H) and the code for

adding a value to register A is 0000 0100

(04H). The necessary steps and code to

perform these operations are as follows.

Action         Code Data
Move value 21H into register A   B0H      21H
Add value 42H to register A      04H     42H
Add value 12H to register A      04H    12H

If the program to perform the actions listed above is stored in memory locations start-

ing at 1400H, the following would represent the contents for each memory address location:
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Figure 0-32. Steps of Instruction Process
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Memory address Contents of memory address    
1400      (B0)code for moving a value to register A
1401      (21)value to be moved
1402      (04)code for adding a value to register A
1403      (42)value to be added
1404      (04)code for adding a value to register A
1405      (12)value to be added
1406      (F4)code for halt
The actions performed by the CPU to run the program above would be as follows: 

1. The CPU’s program counter can have a value between 0000 and FFFFH. The program

counter must be set to the value 1400H, indicating the address of the first instruction

code to be executed. After the program counter has been loaded with the address of

the first instruction, the CPU is ready to execute. 

2. The CPU puts 1400H on the address bus and sends it out. The memory circuitry finds

the location while the CPU activates the READ signal, indicating to memory that it

wants the byte at location 1400H. This causes the contents of memory location

1400H, which is B0, to be put on the data bus and brought into the CPU.

3. The CPU decodes the instruction B0 with the help of its instruction decoder diction-

ary. When it finds the definition for that instruction it knows it must bring the byte in

the next memory location into register A of the CPU. Therefore, it commands its con-

troller circuitry to do exactly that. When it brings in value 21H from memory location

1401, it makes sure that the doors of all registers are closed except register A.

Therefore, when value 21H comes into the CPU it will go directly into register A.

After completing one instruction, the program counter points to the address of the next

instruction to be executed, which in this case is 1402H. Address 1402 is sent out on

the address bus to fetch the next instruction.

4. From memory location 1402H the CPU fetches code 04H. After decoding, the CPU

knows that it must add the byte sitting at the next address (1403) to the contents of

register A. After the CPU brings the value (in this case, 42H) into register A, it pro-

vides the contents of register A along with this value to the ALU to perform the addi-

tion. It then takes the result of the addition from the ALU’s output and puts it into reg-

ister A. Meanwhile the program counter becomes 1404, the address of the next

instruction.

5. Address 1404H is put on the address bus and the code is fetched into the CPU, decod-

ed, and executed. This code again is adding a value to register A. The program count-

er is updated to 1406H.

6. Finally, the contents of address 1406 are fetched in and executed. This HALT instruc-

tion tells the CPU to stop incrementing the program counter and asking for the next

instruction. Without the HALT, the CPU would continue updating the program count-

er and fetching instructions. 

Now suppose that address 1403H contained value 04 instead of 42H. How would the

CPU distinguish between data 04 to be added and code 04? Remember that code 04 for

this CPU means “adds the next value into register A.” Therefore, the CPU will not try to

decode the next value. It simply adds the contents of the following memory location into

register A, regardless of its value.

Harvard and von Neumann architectures 

Every microprocessor must have memory space to store program (code) and data.

While code provides instructions to the CPU, the data provides the information to be
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processed. The CPU uses buses (wire traces) to access the code ROM and data RAM

memory spaces. The early computers used the same bus for accessing both the code and

data. Such an architecture is commonly referred to as von Neumann (Princeton) architec-
ture. That means for von Neumann computers, the process of accessing the code or data

could cause them to get in each other’s way and slow down the processing speed of the

CPU, because each had to wait for the other to finish fetching. To speed up the process of

program execution, some CPUs use what is called Harvard architecture. In Harvard archi-

tecture, we have separate buses for the code and data memory. See Figure 0-33. That

means that we need four sets of buses: (1) a set of data buses for carrying data into and

out of the CPU, (2) a set of address buses for accessing the data, (3) a set of data buses for

carrying code into the CPU, and (4) an address bus for accessing the code. This is easy to

implement inside an IC chip such as a microcontroller where both ROM code and data

RAM are internal (on-chip) and distances are on the micron and millimeter scale. But

implementing Harvard architecture for systems such as x86 IBM PC-type computers is

very expensive because the RAM and ROM that hold code and data are external to the

CPU. Separate wire traces for data and code on the motherboard will make the board large

and expensive. For example, for a Pentium microprocessor with a 64-bit data bus and a

32-bit address bus we will need about 100 wire traces on the motherboard if it is von

Neumann architecture (96 for address and data, plus a few others for control signals of

read and write and so on). But the number of wire traces will double to 200 if we use

Harvard architecture. Harvard architecture will also necessitate a large number of pins

coming out of the microprocessor itself. For this reason you do not see Harvard architec-

ture implemented in the world of PCs and workstations. This is also the reason that micro-

controllers such as AVR use Harvard architecture internally, but they still use von

Neumann architecture if they need external memory for code and data space. The von

Neumann architecture was developed at Princeton University, while the Harvard architec-

ture was the work of Harvard University.
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Review Questions

1. What does “ALU” stand for?  What is its purpose?

2. How are registers used in computer systems?

3. What is the purpose of the program counter?

4. What is the purpose of the instruction decoder?

5. True or false. Harvard architecture uses the same address and data buses to fetch both

code and data.

SUMMARY

The binary number system represents all numbers with a combination of the two

binary digits, 0 and 1. The use of binary systems is necessary in digital computers because

only two states can be represented: on or off. Any binary number can be coded directly

into its hexadecimal equivalent for the convenience of humans. Converting from

binary/hex to decimal, and vice versa, is a straightforward process that becomes easy with

practice. ASCII code is a binary code used to represent alphanumeric data internally in the

computer. It is frequently used in peripheral devices for input and/or output.

The AND, OR, and inverter logic gates are the basic building blocks of simple cir-

cuits. NAND, NOR, and XOR gates are also used to implement circuit design. Diagrams

of half-adders and full-adders were given as examples of the use of logic gates for circuit

design. Decoders are used to detect certain addresses. Flip-flops are used to latch in data

until other circuits are ready for it.

The major components of any computer system are the CPU, memory, and I/O

devices. “Memory” refers to temporary or permanent storage of data. In most systems,

memory can be accessed as bytes or words. The terms kilobyte, megabyte, gigabyte, and

terabyte are used to refer to large numbers of bytes. There are two main types of memo-

ry in computer systems: RAM and ROM. RAM (random access memory) is used for tem-

porary storage of programs and data. ROM (read-only memory) is used for permanent

storage of programs and data that the computer system must have in order to function. All

components of the computer system are under the control of the CPU. Peripheral devices

such as I/O (input/output) devices allow the CPU to communicate with humans or other

computer systems. There are three types of buses in computers: address, control, and data.

Control buses are used by the CPU to direct other devices. The address bus is used by the

CPU to locate a device or a memory location. Data buses are used to send information

back and forth between the CPU and other devices.

This chapter provided an overview of semiconductor memories.  Types of memories

were compared in terms of their capacity, organization, and access time. ROM (read-only

memory) is nonvolatile memory typically used to store programs in embedded systems.

The relative advantages of various types of ROM were described, including PROM,

EPROM, UV-EPROM, EEPROM, Flash memory EPROM, and mask ROM. 

Address decoding techniques using simple logic gates, decoders, and programmable

logic were covered.

The computer organization and the internals of the CPU were also covered.    
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PROBLEMS

SECTION 0.1: NUMBERING AND CODING SYSTEMS

1. Convert the following decimal numbers to binary:

(a) 12      (b) 123   (c) 63   (d) 128   (e) 1000

2. Convert the following binary numbers to decimal:

(a) 100100      (b) 1000001   (c) 11101   (d) 1010   (e) 00100010

3. Convert the values in Problem 2 to hexadecimal.

4. Convert the following hex numbers to binary and decimal:

(a) 2B9H   (b) F44H   (c) 912H   (d) 2BH   (e) FFFFH

5. Convert the values in Problem 1 to hex.

6. Find the 2’s complement of the following binary numbers:

(a) 1001010   (b) 111001   (c) 10000010   (d) 111110001

7. Add the following hex values:

(a) 2CH + 3FH   (b) F34H + 5D6H  (c) 20000H + 12FFH   

(d) FFFFH + 2222H

8. Perform hex subtraction for the following:

(a) 24FH – 129H (b) FE9H – 5CCH (c) 2FFFFH – FFFFFH   

(d) 9FF25H – 4DD99H

9. Show the ASCII codes for numbers 0, 1, 2, 3, ..., 9 in both hex and binary.

10. Show the ASCII code (in hex) for the following strings:

“U.S.A. is a country” CR,LF   

“in North America” CR,LF

(CR is carriage return, LF is line feed)

SECTION 0.2: DIGITAL PRIMER

11. Draw a 3-input OR gate using a 2-input OR gate. 

12. Show the truth table for a 3-input OR gate.

13. Draw a 3-input AND gate using a 2-input AND gate.

14. Show the truth table for a 3-input AND gate.

15. Design a 3-input XOR gate with a 2-input XOR gate. Show the truth table for a 3-

input XOR.

16. List the truth table for a 3-input NAND.

17. List the truth table for a 3-input NOR.

18. Show the decoder for binary 1100.

19. Show the decoder for binary 11011.

20. List the truth table for a D-FF.
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SECTION 0.3: SEMICONDUCTOR MEMORY

21. Answer the following:

(a)  How many nibbles are 16 bits? 

(b)  How many bytes are 32 bits?

(c)  If a word is defined as 16 bits, how many words is a 64-bit data item? 

(d)  What is the exact value (in decimal) of 1 meg?

(e)  How many kilobytes is 1 meg?

(f)  What is the exact value (in decimal) of 1 gigabyte?

(g)  How many kilobytes is 1 gigabyte?

(h)  How many megs is 1 gigabyte?

(i)   If a given computer has a total of 8 megabytes of memory,  how many 

bytes (in decimal) is this?  How many kilobytes is this?

22. A given mass storage device such as a hard disk can store 2 gigabytes of information.

Assuming that each page of text has 25 rows and each row has 80 columns of ASCII

characters (each character = 1 byte), approximately how many pages of information

can this disk store?

23. What is the difference in capacity between a 4M memory chip and 4M of computer

memory?

24. True or false. The more address pins, the more memory locations are inside the chip.

(Assume that the number of data pins is fixed.)

25. True or false. The more data pins, the more each location inside the chip will hold.

26. True or false. The more data pins, the higher the capacity of the memory chip.

27. True or false. The more data pins and address pins, the greater the capacity of the

memory chip.

28. The speed of a memory chip is referred to as its ________________.

29. True or false. The price of memory chips varies according to capacity and speed.

30. The main advantage of EEPROM over UV-EPROM is ________________.

31. True or false. SRAM has a larger cell size than DRAM. 

32. Which of the following, EPROM, DRAM, or SRAM, must be refreshed periodically?

33. Which memory is used for PC cache?

34. Which of the following, SRAM, UV-EPROM, NV-RAM, or DRAM, is volatile mem-

ory?

35. RAS and CAS are associated with which type of memory?  

(a) EPROM  (b) SRAM  (c) DRAM  (d) all of the above

36. Which type of memory needs an external multiplexer?

(a) EPROM  (b) SRAM  (c) DRAM  (d) all of the above

37. Find the organization and capacity of memory chips with the following pins.

(a) EEPROM A0–A14, D0–D7 (b) UV-EPROM A0–A12, D0–D7

(c) SRAM A0–A11, D0–D7 (d) SRAM A0–A12, D0–D7

(e) DRAM A0–A10, D0 (f) SRAM A0–A12, D0

(g) EEPROM A0–A11, D0–D7 (h) UV-EPROM A0–A10, D0–D7

(i) DRAM A0–A8, D0–D3 (j) DRAM A0–A7, D0–D7



38. Find the capacity, address, and data pins for the following memory organizations.

(a) 16K × 8 ROM (b) 32K × 8 ROM

(c) 64K × 8 SRAM (d) 256K × 8 EEPROM

(e) 64K × 8 ROM (f) 64K × 4 DRAM

(g) 1M × 8 SRAM (h) 4M × 4 DRAM

(i) 64K × 8 NV-RAM

SECTION 0.4: BUS DESIGNING AND ADDRESS DECODING 

39. In a given byte-addressable computer, memory locations 10000H to 9FFFFH are

available for user programs. The first location is 10000H and the last location is

9FFFFH. Calculate the following:

(a)  The total number of bytes available (in decimal)

(b)  The total number of kilobytes (in decimal)

40. A given computer has a 32-bit data bus. What is the largest number that can be car-

ried into the CPU at a time?

41. Below are listed several computers with their data bus widths. For each computer, list

the maximum value that can be brought into the CPU at a time (in both hex and dec-

imal).

(a) Apple 2 with an 8-bit data bus            

(b) x86 PC with a 16-bit data bus

(c) x86 PC with a 32-bit data bus

(d) Cray supercomputer with a 64-bit data bus

42. Find the total amount of memory, in the units requested, for each of the following

CPUs, given the size of the address buses (Each memory location is 8-bit):

(a) 16-bit address bus (in K)      

(b) 24-bit address bus (in megs)   

(c) 32-bit address bus (in megabytes and

gigabytes)   

(d) 48-bit address bus (in megabytes,

gigabytes, and terabytes)

43. Of the data bus and address bus, which is

unidirectional and which is bidirectional?

44. Find the address range of the memory

design in the diagram.

45. Using NAND gates and inverters, design

decoding circuitry for the address range

2000H–2FFFH.

46. Find the address range for Y0, Y3, and Y6 of the

74LS138 for the diagrammed design.

47. Using the 74138, design the memory decoding circuitry

in which the memory block controlled by Y0 is in the

range 0000H to 1FFFH.  Indicate the size of the memo-

ry block controlled by each Y. 
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48. Find the address range for Y3, Y6, and Y7 in Problem 47.

49. Using the 74138, design memory decoding circuitry in which the memory block con-

trolled by Y0 is in the 0000H to 3FFFH space. Indicate the size of the memory block

controlled by each Y. 

50. Find the address range for Y1, Y2, and Y3 in Problem 49.

SECTION 0.5: I/O ADDRESS DECODING AND DESIGN 

51. A ______________ (latch, tri-state buffer) is used in the design of input ports.

52. A ______________ (latch, tri-state buffer) is used in the design of output ports.

53. Which one is more economical, linear address select or absolute address decoding?

54. Explain address aliasing.

55. Which one creates aliases, the linear address select or absolute address decoding?

56. Explain memory mapped I/O.

57. True or false. In peripheral I/O, an input port is distinguished from an output port by

the IOR and IOW control signals.

58. _______ (IOR, IOW) is used in the design of input ports.

59. _______ (IOR, IOW) is used in the design of output ports.

60. Design an output port using NAND and inverter gates in addition to a 74LS373.

Assign address 16H to it and use IOW control signal.

61. Design an input port using NAND and inverter gates in addition to a 74LS244. Assign

address 81H to it and use IOR control signal.

62. Design an output port using NAND and inverter gates in addition to a 74LS373.

Assign address 0924H to it and use memory mapped I/O.

63. Design an input port using NAND and inverter gates in addition to a 74LS244. Assign

address 09090H to it and use memory mapped I/O.

SECTION 0.6: CPU AND HARVARD ARCHITECTURE

64. Which register of the CPU holds the address of the instruction to be fetched?

65. Which section of the CPU is responsible for performing addition?

66. List the three bus types present in every CPU.

ANSWERS TO REVIEW QUESTIONS

SECTION 0.1: NUMBERING AND CODING SYSTEMS

1. Computers use the binary system because each bit can have one of two voltage levels: on and

off.

2. 3410 = 1000102 = 2216

3. 1101012 = 3516 = 5310

4. 1110001            

5. 010100
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6. 461  

7. 275

8. 38 30 78 38 36 20 43 50 55 73

SECTION 0.2: DIGITAL PRIMER

1. AND

2. OR

3. XOR

4. Buffer

5. Storing data

6. Decoder

SECTION 0.3: SEMICONDUCTOR MEMORY 

1. 24,576

2. Random access memory;  it is used for temporary storage of programs that the CPU is run-

ning, such as the operating system, word processing programs,  etc.

3. Read-only memory; it is used for permanent programs such as those that control the keyboard,

etc.

4. The contents of RAM are lost when the computer is powered off.

5. The CPU, memory, and I/O devices

6. Central processing unit; it can be considered the “brain” of the computer; it executes the pro-

grams and controls all other devices in the computer.

7. c 

8. (a) 16K × 8, 128K bits (b) 64K × 8, 512K (c) 4K × 8, 32K 

9. (a) 2K × 1, 2K bits (b) 8K × 4, 32K (c) 128K × 8, 1M 

(d) 64K × 4, 256K (e) 256K × 1, 256K (f) 256K × 4, 1M

10. (a) 64K bits, 14 address, and 4 data (b) 256K, 15 address, and 8 data 

(c) 1M, 10 address, and 1 data (d) 1M, 18 address, and 4 data

(e) 512K, 16 address, and 8 data (f) 4M, 10 address, and 4 data

11. b, c 

SECTION 0.4: BUS DESIGNING AND ADDRESS DECODING 

1. The address bus carries the location (address) needed by the CPU; the data bus carries infor-

mation in and out of the CPU; the control bus is used by the CPU to send signals controlling

I/O devices.

2. (a) bidirectional   (b) unidirectional   

3. 64K, or 65,536 bytes

4. 16K bytes

5. 3, 8

6. Both must be low.

7. G1 must be high.

8. 5000H–5FFFH
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SECTION 0.5: I/O ADDRESS DECODING AND DESIGN 

1. Latch, tri-state buffer  

2. The CPU provides the data on the data bus only for a short amount of time. Therefore,
it must be latched before it is lost.

3. Low

4. (a) WR (b) RD

SECTION 0.6: CPU ARCHITECTURE 

1. Arithmetic/logic unit; it performs all arithmetic and logic operations.

2. They are used for temporary storage of information.

3. It holds the address of the next instruction to be executed.

4. It tells the CPU what actions to perform for each instruction.

5. False
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