APPENDIX A

PIC18 INSTRUCTIONS:
FORMAT AND
DESCRIPTION

OVERVIEW

In the first section of this appendix, we describe the instruction
format of the PIC18. Special emphasis is placed on the instructions using
both WREG and file registers. This section includes a list of machine
cycles (clock counts) for each of the PIC18 instructions.

In the second section of this appendix, we describe each instruction
of the PIC18. In many cases, a simple programming example is given to
clarify the instruction.

This Appendix deals mainly with PIC18 instructions. In Section A.1, we
describe the instruction formats and categories. In Section A.2, we describe each
instruction of PIC18 with some examples.

SECTION A.1: PIC18 INSTRUCTION FORMATS AND CATE-
GORIES

As shown in Figure A-1, the PIC18 instructions fall into five categories:

1. Bit-oriented instructions

2. Intructions using a literal value

3. Byte-oriented instructions

4. Table read and write instructions

5. Control instructions using branch and call

In this section, we describe the format and syntax with special emphasis
placed on byte-oriented instructions. For some of the instructions, the reader
needs to review the concepts of access bank and bank registers in Chapter 6
(Section 6.3).

Bit-oriented instructions

The bit-oriented instructions perform operations on a specific bit of a file
register. After the operation, the result is placed back in the same file register. For
example, the “BCF f)b,a” instruction clears a specific bit of fileReg. See
Table A-1. In these types of instructions, the b is the specific bit of the fileReg,
which can be 0 to 7, representing the DO to D7 bits of the register. The fileReg
location can be in the bank register called access bank (if a = 0) or a location with-
in other bank registers (if a = 1). Notice that if a = 0, the assembler assumes the
access bank automatically.

Table A-1: Bit-Oriented Instructions (from Microchip datasheet)

Mnemonic,
Operands

BIT-ORIENTED FILE REGISTER OPERATIONS

BCF f, b, a| Bit Clear f

BSF f b, a|BitSetf
BTESC f b a|BitTestf, Skipif Clear

BTFSS f, b, a giﬂgst&a fSkip if Set
BTG fdalc-t!o99

Description Cycles

(2 or 3)
(20r3)

_—d A A

Look at the examples that follow for clarification of bit-oriented instruc-
tions:

A-2

Byte-oriented File Register operations Example Instructions
15 10 9 8 7 0
OPCODE | d | a| f(FILE#) |ADDWF MYREG, W, B

d = 0 for result destination to be WREG Register
d = 1 for result destination to be File Register (f)
a = 0 to force Access Bank
a =1 for BSR to select bank
f = 8-bit File Register address

Byte to Byte move operations (2-word)

15 12 11 0
| OPCODE | f (Source FILE #) |MOVFF MYREG1, MYREG2
15 12 11 0

| 1111 | f (Destination FILE#) |

f = 12-bit File Register address
Bit-oriented File Register operations
15 12 11 9 8 7 0
OPCODE| b (BIT#) a | f(FILE#) |BSF MYREG, bit, B

b = 3-bit position of bit in File Register (f)
a = 0 to force Access Bank
a =1 for BSR to select bank
f = 8-bit File Register address
Literal operations

15 8 7 0
OPCODE k (literal) |MOVLW Ox7F

k = 8-bit immediate value
Control operations
CALL, GOTO, and Branch operations
15 87 0
| OPCODE | n<7:.0> (literal) | GOTO label

15 12 11 0
| 1111 n<19:8> (literal) |

n = 20-bit immediate value

Figure A-1. General Formatting of PIC18 Instructions (From MicroChip)

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

A-3

BCEF PORTB, 5 ;clear bit D5 of PORTB

BCEF TRISB,4 ;clear bit D4 of TRISC reg
BTG PORTC, 7 ;toggle bit D7 of PORTC
BTG PORTD, 0 ;toggle bit DO of PORTD
BSF STATUS,C ;set carry flag to one

The following example uses the fileReg in the access bank:

MyReg SET 0x30 ;set aside loc 30H for MyReg

MOVLW 0x0 JWREG = 0
MOVWE MyReg ;MyReg = 0
BTG MYReg, 7 ;toggle bit D7 of MyReg
BTG MYReg, 5 ;toggle bit D5 of MyReg

The following example uses the fileReg in the access bank:

MyReg SET 0x50 ;set aside loc. 50H for MyReg

MOVLW 0x0 :WREG = 0
MOVWE MyReg ;MyReg = 0
BTG MYReqg, 2 ;toggle bit D2 of MyReg
BTG MYReg, 4 ;toggle bit D4 of MyReg

As we discuss in Chapter 6, when using a bank other than the access bank,
we must load the BSR (bank select register) with the desired bank number, which
can go from 1 to F (in hex), depending on the family member. We do that by using
the MOVLB instruction. Look at the following examples.

The example below uses a location in Bank 2 (RAM locations 200-2FFH).

YReg SET 0x30 ;set aside loc 30H for YReg
MOVLB 0x2 ;use Bank 2 (address loc 230H)
MOVLW 0x0 :WREG = 0

MOVWE YReg ;YReg = 0

BTG YReg,7,1 ;toggle bit D7 of YReg in bank 2
BTG YReg,5,1 ;toggle bit D5 of YReg in bank 2

The example below uses a location in Bank 4 (RAM locations 400-4FFH).

ZReg SET 0x10 ;set aside loc 10H for ZReg
MOVLB 0Ox4 ;use Bank 4 (address loc 410H)
MOVWL 0x0 JWREG = 0

MOVWE ZReg ;ZReg = 0

BSF ZReg, 6,1 ;set HIGH bit D6 of ZReg in bank 4

BSF ZReg, 1,1 ;set HIGH bit D1 of ZReg in bank 4

Notice that all the bit-oriented instructions start with letter B (bit). The
branch instructions also start with letter B, like “BZ target” for branch if zero, but
they are not bit-oriented.

A-4

Table A-2: Literal Instructions (from Microchip datasheet)

Mnemonic,

Operands Description Cycles

LITERAL OPERATIONS
ADDLW k | Add literal and WREG
ANDLW k | AND literal with WREG

IORLW k Inclusive OR literal with WREG
LFSR f, k |Move literal (12-bit) 2nd word
to FSRx 1st word
MOVLB k| Move literal to BSR <3:0>
MOVLW k | Move literal to WREG
MULLW k| Multiply literal with WREG

k

k

N_\A—\

RETLW Return with literal in WREG
SUBLW Subtract WREG from literal
XORLW 1| Exclusive OR literal with WREG

_, A N R

Instructions using literal values

In this type of instruction, an operation is performed on the WREG regis-
ter and a fixed value called k. See Table A-2. Because WREG is only 8-bit, the k
value cannot be greater than 8-bit. Therefore, the k value is between 0-255 (00—FF
in hex). After the operation, the result is placed back in WREG. Look at the fol-
lowing examples for clarification:

MOVLW 0x45 ;WREG = 45H

ADDLW 0x24 ;WREG = 45H + 24H = 69H

MOVLW 0x35 ;WREG = 35H

ANDLW 0x0F ;WREG = 35H ANDed with OFH = 05H
MOVLW 0x55 ;WREG = 55H

XORLW O0xAA ;WREG = 55H EX-ORed with AAH = FFH

Byte-oriented instructions

There are two groups of instructions in this category. In the first group, the
operation is performed on the file register and the result is placed back in the file
register. The instruction “CLRF f,a” is an example in this group. See Table A-3. In
the second group, the operation involves both fileReg and WREG. As a result, we
have the options of placing the result in fileReg or in WREG. As an example in this
group, examine the “ADDWF f,d,a” instruction. The destination for the result can
be WREG (if d = 0) or file register (if d = 1). For the fileReg location, it can be
in the access bank (if a = 0) or in other bank registers (if a = 1). Also notice that
ifa=0, the assembler assumes that automatically.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION A-5

Table A-3: Byte-Oriented Instructions (from Microchip datasheet)

Mnemonic,
Operands

Description

Cycles

BYTE-ORIENTED FILE REGISTER OPERATIONS

ADDWF f,d, a
ADDWEFCHT, d, a

ANDWEF f, d, a
CLRF f, a,
COMF f,d, a
CPFSEQ f, a,
CPFSGT f,a,
CPFSLT f,a,
DECF f,d, a
DECFSZ f,d, a
DCFSNZ f,d, a
INCF f,d, a
INCFSZ f,d,a
INFSNZ f,d, a
IORWF f,d,a
MOVF f,d,a

MOVFF fS, fq
MOVWF f, a
MULWF f, a
NEGF f, a
RLCF f,d,a
RLNCF f,d, a
RRCF f,d,a
RRNCF f,d, a
SETF f, a,
SUBFWB f, d, a

SUBWF f,d, a
SUBWEFB f, d, a

SWAPF f,d,a
TSTFSZ f,a

XORWF f,d,a

Add WREG and f
Add WREG and Carry bit to f

Add WREG with f
Clear f

Complement f

Compare f with WREG, skip =
Compare f with WREG, skip >
Compare f with WREG, skip <
Decrement f

Decrement f, Skip if 0
Decrement f, Skip if Not 0
Increment f

Increment f, Skip if 0
Increment f, Skip if Not 0
Inclusive OR WREG with f
Move f

Move fg(source) to 1st word

fq(destination) 2nd word
Move WREG to f
Multiply WREG with f

Negate f

Rotate Left f through Carry

Rotate Left f (No Carry)

Rotate Right f through Carry

Rotate Right f (No Carry)

Set f

Subtract f from WREG with
borrow

Subtract WREG from f
Subtract WREG from f with

borrow
Swap nibbles in f
Test f, Skip if 0
Exclusive OR WREG with f

1

—_— -

N =) a2 A A @A @A @ =

B e T e e . e e

Look at the following examples.

Whend=0and a=0:

MyReg SET 0x20 ;loc 20H for MyReg
MOVLW 0x45 ;WREG = 45H

MOVWE MyReg ;MyReg = 45H

MOVLW 0x23 ;WREG = 23H

ADDWF MyReg ;WREG = 68H (45H + 23H = 68H)

In the above example, the last instruction could have been coded as
“ADDWF MyReg,0,0”.

Whend=1and a=0:

MyReg SET 0x20 ;loc 20H for MyReg
MOVLW 0x45 ;WREG = 45H

MOVWE MyReg ;MyReg = 45H

MOVLW 0x23 ;WREG = 23H

ADDWF MyReg, F ;MyReg = 68H (45H + 23H = 68H)

In the above example, the last instruction could have been coded as
“ADDWF MyReg,F,0” or “ADDWF MyReg,1,0”. As far as the MPLAB is con-
cerned, they mean the same thing. Notice that the use of letter F in “ADDWF
MyReg,F” is being used in place of 1.

To use banks other than the access bank, we must load the BSR register
first. The following example uses a location in Bank 2 (RAM location
200-2FFH).

Whend=0and a=1:

MyReg SET 0x30 ;set aside location 30H for MyReg

MOVLBOx2 ;use Bank 2 (address loc 230H)
MOVLW 0x45 ;WREG = 45H

MOVWE MyReg, 1 ;MyReg = 45H (loc 230H)
MOVLW 0x23 ;WREG = 23H

ADDWF MyReg,l1 ;WREG = 68H (add loc 230H to W)

Whend=1anda=1:

MyReg SET 0x20 ;loc 20H for MyReg
MOVLB 0x4 ;use bank 4

MOVLW 0x45 ;WREG = 45H

MOVWFE MyReg ;MyReg = 45H (loc 420H)
MOVLW 0x23 ;WREG = 23H

ADDWF MyReg, F, 1 ;MyReg = 68H (loc 420)

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION A-7

Register-indirect addressing mode uses FSRx as a pointer to RAM loca-
tion. We have three registers, FSRO, FSR1, and FSR2, that can be used for
pointers.

Examples:

ADDWE POSTINCO ;add to W data pointed to by FSRO,
;also increment FSRO

ADDWE POSTINC1 ;add to W data pointed to by FSRI1
;also increment FSRI1

See Example 6-6 in Chapter 6.

Table processing instructions

The table processing instructions allow us to read fixed data located in
the program ROM of the PIC18. See Table A-4. They also allow us to write into
the program ROM if it is Flash memory. Chapter 14 discusses the TBLRD and
TBLWRT instructions in detail. It also shows how to use table read and write to

access the EEPROM.
Table A-4: Table Processing Instructions (from Microchip datasheet)

Mnemonic, Description Cycles

Operands P y
DATA <—»PROGRAM MEMORY OPERATIONS
TBLRD* Table Read 2
TBLRD*+ Table Read with post-increment | 2
TBLRD*- Table Read with post-decrement| 2
TBLRD+* Table Read with pre-increment | 2
TBLWT* Table Write)
TBLWT*+ Table Write with post-increment | 2
TBLWT*- Table Write with post-decrement| 2
TBLWT+* Table Write with pre-increment 2

Control instructions

The control instructions such as branch and call deal mainly with flow
control. See Table A-5. We must pay special attention to the target address of
the control instructions. The target address for some of the branch instructions
such as BZ (branch if zero) cannot be farther than 128 bytes away from the cur-
rent instruction. The CALL instruction allows us to call a subroutine located
anywhere in the 2M ROM space of the PIC18. See the individual instructions in
the next section for further discussion on this issue.

Table A-5: Control Instructions (from Microchip datasheet)

Mnemonic, Description Cycles
Operands

CONTROL OPERATIONS

BC n |Branch if Carry 1
BN n | Branch if Negative 1
BNC n | Branch if Not Carry 1
BNN n |Branch if Not Negative 1
BNOV n | Branch if Not Overflow 1
BNZ n |Branch if Not Zero 1
BOV n |Branch if Overflow 1
BRA n | Branch Unconditionally 2
BZ n | Branch if Zero 1
CALL n, s| Call subroutine 1st word 2

2nd word
CLRWDT — [Clear Watchdog Timer 1
DAW — | Decimal Adjust WREG 1
GOTO n |Gotoaddress 1stword 2
2nd word

NOP — | No Operation 1
NOP — | No Operation 1
POP — | Pop top of return stack (TOS) 1
PUSH —— | Push top of return stack (TOS) | 1
RCALL n | Relative Call 2
RESET Software device RESET 1
RETFIE s | Return from interrupt enable | 2
RETLW k| Return with literal in WREG | 2

RETURN s |Return from Subroutine
SLEEP — [Go into standby mode

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

SECTION A.2: THE PIC18 INSTRUCTION SET

In this section we provide a brief description of each instruction with some
examples.

ADDLW K Add Literal to WREG

Function: ADD literal value of k to WREG
Syntax: ADDLW k

This adds the literal value of k to the WREG register, and places the result
back into WREG. Because register WREG is one byte in size, the operand k must
also be one byte.

The ADD instruction is used for both signed and unsigned numbers. Each
one is discussed separately. See Chapter 5 for discussion of signed numbers.

Unsigned addition

In the addition of unsigned numbers, the status of C, DC, Z, N, and OV
may change. The most important of these flags is C. It becomes 1 when there is a
carry from D7 out in 8-bit (D0-D7) operations.

Example:
MOVLW 0x45 ;WREG = 45H
ADDLW Ox4F ;WREG = 94H (45H + 4FH = 94H)
;C =0
Example:
MOVLW OxFE ;WREG = FEH
ADDLW 0x75 ;WREG = FE + 75 = 73H
;C =1
Example:
MOVLW 0x25 ;WREG = 25H
ADDLW Ox42 ;WREG = 67H (25H + 42H = 67H)
;C =0

Notice that in all the above examples we ignored the status of the OV flag.
Although ADD instructions do affect OV, it is in the context of signed numbers
that the OV flag has any significance. This is discussed next.

Signed addition and negative numbers

In the addition of signed numbers, special attention should be given to the
overflow flag (OV) because this indicates if there is an error in the result of the
addition. There are two rules for setting OV in signed number operation. The
overflow flag is set to 1:

1. If there is a carry from D6 to D7 and no carry from D7 out.
2. If there is a carry from D7 out and no carry from D6 to D7.
Notice that if there is a carry both from D7 out and from D6 to D7, OV = 0.

A-10

Example:
MOVLW +D'8" ;W 0000 1000
ADDLW +D'4' ;W 0000 1100 OV = 0,
;C =0, N =20
Notice that N = D7 = 0 because the result is positive, and OV = 0 because
there is neither a carry from D6 to D7 nor any carry beyond D7. Because OV =
0, the result is correct [(+8) + (+4) = (+12)].

Example:
MOVLW +D'66" ;W = 0100 0010
ADDLW +D'69' ;W = 1000 0101 = -121
ADDWEF ;W = 1000 0111 = -121
)

; (INCORRECT) C = 0, N = D7 =1, OV =1
In the above example, the correct result is +135 [(+66) + (+69) = (+135)],

but the result was -121. OV =1 is an indication of this error. Notice that N =1

because the result is negative; OV = 1 because there is a carry from D6 to D7 and

CcC=0.
Example:
MOVLW -D'12' ;W = 1111 0100
ADDLW +D'18' ;W =W + (+0001 0010)
;W = 0000 0110 (+6) correct

;N =0, OV = 0, and C = 1
Notice above that the result is correct (OV = 0), because there is a carry
from D6 to D7 and a carry from D7 out.

Example:
MOVLW -D'30' ;W = 1110 0010
ADDLW +D'14' ;W =W + 0000 1110
;W = 1111 0000 (-16, CORRECT)
;N =D7 =1, ov = 0, C =0

OV = 0 because there is no carry from D7 out nor any carry from D6 to
D7.

Example:
MOVLW -D'126" ;W = 1000 0010
ADDLW -D'127' ;W =W + 1000 0001
;W = 0000 0011 (+3, INCORRECT)
;D7 = N = 0, OV = 1
C =1 because there is a carry from D7 out but no carry from D6 to D7.

From the above discussion we conclude that while Carry is important in
any addition, OV is extremely important in signed number addition because it is
used to indicate whether or not the result is valid. As we will see in instruction
"DAW", the DC flag is used in the addition of BCD numbers.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

ADDWF Add WREG and f

Function: ADD WREG and fileReg
Syntax: ADDWEF f,d,a

This adds the fileReg value to the WREG register, and places the result in
WREG (if d = 0) or fileReg (if d = 1).

The ADDWEF instruction is used for both signed and unsigned numbers.
(See ADDLW instruction.)

Example:
MyReg SET 0x20 ;loc 20H for MyReg
MOVLW 0x45 ;WREG = 45H
MOVWE MyReg ;MyReg = 45H
MOVLW Ox4F ;WREG = 4FH
ADDWE MyReg ;WREG = 94H (45H + 4FH = 94H)

;C =0
We can place the result in fileReg, as shown in the following example:

MyReg SET 0x20 ;loc 20H for MyReg
MOVLW 0x45 ;WREG = 45H
MOVWE MyReg ;MyReg = 45H
MOVLW Ox4F ;WREG = 4FH
ADDWF MyReg, F ;MyReg = 94H

; (45H + 4FH = 94H), C =0
For cases of a=0and a =1, see Section A.1 in this chapter.

ADDWFC Add WREG and Carry flag to fileReg

Function: ADD WREG and Carry bit to fileReg
Syntax: ADDWEFC fd,a

This will add WREG and the C flag to fileReg (Destination = WREG +
fileReg + C). If C =1 prior to this instruction, 1 is also added to destination. If C
= 0 prior to the instruction, source is added to destination plus 0. This instruction
is used in multibyte additions. In the addition of 25F2H to 3189H, for example, we
use the ADDWEFC instruction as shown below.

Example when d = 0:
Assume we have the following data in RAM locations 0x10 and 0x11

0x10 = (F2)

0x11 = (25)

Reg L SET 0x10 ;loc 0x10 for Reg L
Reg H SET 0x11 ;loc Ox1l for Reg H
BCF STATUS,C ;make carry = 0
MOVLW 89H ;WREG = 89H

ADDWFC Reg L,1 ;Reg L = 89H + F2H + 0 = 7BH

A-12

;and C = 1
MOVLW 0x31 ;WREG = 31H
ADDWFC Reg 2,1 ;Reg H = 31H + 25H + 1 = 57H

Therefore the result is:

25F2H
+3189H
577BH
ANDLW AND Literal byte with WREG
Function: Logical AND literal value k with WREG
Syntax: ANDLW k
This performs a logical AND on the WREG and A B|AAND B
the Literal byte operand, bit by bit, storing the result in 0 0 0
the WREG, 0 1 0
1 0 0
Example: 1 1 1
MOVLW 0x39 ;W = 39H
ANDLW 0x09 ;W = 39H ANDed with 09
39H 0011 1001
O9H 0000 1001
O9H 0000 1001
Example:
MOVLW 32H ;W = 32H 32H 0011 0010
ANDLW 50H ;AND W with S50H 0101 0000
; (W = 10H) 10H 0001 0000
ANDWF AND WREG with fileReg

Function: Logical AND for byte variables
Syntax: ANDWEF f,d,a

This performs a logical AND on the fileReg value and the WREG register,
bit by bit, and places the result in WREG (if d = 0) or fileReg (if d = 1).

Example:
MyReg SET 0x40;set MyReg loc at 0x40
MOVLW 0x39 ;W = 39H
MOVWF MyReg ;MyReg = 39H
MOVLW 0x09
ANDWF MyReg ;39H ANDed with 09 (W = 09)

39H 0011 1001
09H 0000 1001
0O9H 0000 1001

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

Example:

MyReg SET 0x40;set MyReg loc at 0x40
MOVLW 0x32 ;W = 32H

MOVWE MyReg ;MyReg = 32H

MOVLW OxOQF ;WREG = O0OFH

ANDLW MyReg ;32H ANDed with OFH (W = 02)
32H 0011 0010

OFH___ 0000 1111

02H 0000 0010

We can place the result in fileReg as shown in the examples below:

MyReg
MOVLW
MOVWEF
MOVLW
ANDLW

SET 0x40;set MyReg loc at 0x40

0x32 ;W = 32H
MyReg ;MyReg = 32H
0x50 ;WREG = 50H

MyReqg,F ;MyReg = 09, WREG = 50H

The instructions below clear (mask) certain bits of the output ports, assum-
ing the ports are configured as output ports:

MOVLW
ANDWFE
MOVLW
ANDWFE
MOVLW
ANDWFE

Branch Condition

O0xXFE
PORTB,F ;mask PORTB.0 (DO of Port B)
O0x7F
PORTC,F ;mask PORTC.7 (D7 of Port C)
O0xFE7
PORTD,F ;mask PORTD.3 (D3 of Port D)

Function:
In this type of Branch (jump), control is transferred to a target address if
certain conditions are met. The following is list of branch instructions dealing

with the flags:

BC
BNC
BZ
BNZ
BN
BNN
BOV
BNOV

Conditional Branch (jump)

Branch if carry jump if C=1
Branch if no carry jump if C=0
Branch if zero jump ifZ =1
Branch if no zero jump ifZ=0
Branch if negative jump if N =1
Branch if no negative Jjump if N=0
Branch if overflow jump if OV =1
Branch if no overflow Jjump if OV =0

Notice that all “Branch condition” instructions are short jumps, meaning
that the target address cannot be more than -128 bytes backward or +127 bytes for-
ward of the PC of the instruction following the jump. In other words, the target
address cannot be more than -128 to +127 bytes away from the current PC. What

A-14

happens if a programmer needs to use a “Branch condition” to go to a target
address beyond the -128 to +127 range? The solution is to use the “Branch con-
dition” along with the unconditional GOTO instruction, as shown below.

ORG 0x100

MOVLW 0x87 ;WREG = 87H

ADDLW 0x95 ;C = 1 after addition

BNC NEXT ;branch if C = 0

GOTO OVER ; target more than 128 bytes away
NEXT :

ORG 0x5000
OVER: MOVWE PORTD
BC Branchif C=1

Function: Branch if Carry flag bit = 1
Syntax: BC target address

This instruction branches if C = 1.

Example:
MOLW 0x0 JWREG = O

BACK ADDLW 0x1 ;add 1 to WREG
BC EXIT ;exit 1if C =1
BRA BACK ; keep doing it

EXIT

Notice that this is a 2-byte instruction; therefore, the target address cannot
be more than -128 to +127 bytes away from the program counter. See Branch
Condition for further discussion on this issue.

BCF Bit Clear fileReg

Function: Clear bit of a fileReg
Syntax: BCF fb,a

This instruction clears a single bit of a given file register. The bit can be
the directly addressable bit of a port, register, or RAM location. Here are some
examples of its format:

BCF STATUS,C ;C =0

BCF PORTB, 5 ;CLEAR PORTB.5 (PORTB.5 = 0)

BCF PORTC, 7 ;CLEAR PORTC.7 (PORTC.7 = Q)

BCF MyReg, 1 ;CLEAR D1 OF File Register MyFile

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

BN Branchif N=1

Function: Jump if Negative flag bit = 1
Syntax: BN target address

This instruction branches if N = 1. It is used in signed number addition.
See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the tar-
get address cannot be more than -128 to +127 bytes away from the program count-
er. See Branch Condition for further discussion on this issue.

BNC Branch if no Carry

Function: Branch if Carry flag is 0
Syntax: BNC target address

This instruction examines the C flag, and if it is zero it will jump (branch)
to the target address.

Example: Find the total sum of the bytes F6H, 98H, and 8AH. Save the car-
ries in register C_Reg.

C Reg SET 0x20 ;set aside loc 0x20 for carries

MOVLW 0x0 ;W =20
MOVWE C_Reg ;C Reg = 0
ADDLW OxF6
BNC OVERI1
INCF C Reqg,F
OVER1: ADDLW 0x98
BNC OVER2
INCF C Reqg,F
OVER2: ADDWE Ox8A
BNC OVER3
INCF C Reg
OVER3:

Notice that this is a 2-byte instruction; therefore, the target address cannot
be more than -128 to +127 bytes away from the program counter. See Branch
Condition for further discussion on this.

BNN Branch if Not Negative

Function: Branch if Negative flag bit =0
Syntax: BNN target address

This instruction branches if N = 0. It is used in signed number addition.
See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the tar-
get address cannot be more than -128 to +127 bytes away from the program count-
er. See Branch Condition for further discussion on this issue.

A-16

BNOV Branch if No Overflow

Function: Jump if overflow flag bit =0
Syntax: BNOV target address

This instruction branches if OV = 0. It is used in signed number addition.
See ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the tar-
get address cannot be more than -128 to +127 bytes away from the program count-
er. See Branch Condition for further discussion on this issue.

BNZ Branch if No Zero
Function: Jump if Zero flag is 0
Syntax: BNZ target address

This instruction branches if Z = 0.

Example:
CLRF TRISB ; PORTB as output
CLREF PORTB ;clear PORTB
OVER INCF PORTB, F ; INC PORTB
BNZ OVER ;do it until it becomes zero

Example: Add value 7 to WREG five times.

COUNTER SET 0x20 ;loc 20H for COUNTER

MOVLW 0x5 ;WREG = 5
MOVWE COUNTER ;COUNTER = 05
MOVLW 0x0 ;WREG = 0
OVER ADDLW O0x7 ;add 7 to WREG
DECF COUNTER,F ;decrement counter
BNZ OVER ;do it until counter is zero

Notice that this is a 2-byte instruction; therefore, the target address cannot
be more than -128 to +127 bytes away from the program counter. See Branch
Condition for further discussion on this issue.

BOV Branch if Overflow
Function: Jump if Overflow flag = 1
Syntax: BOV target address

This instruction jumps if OV = 1. It is used in signed number addition. See
ADDLW instruction. Notice that this is a 2-byte instruction; therefore, the target
address cannot be more than -128 to +127 bytes away from the program counter.
See Branch Condition for further discussion on this issue.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

BRA Branch unconditional

Function: Branch unconditionally
Syntax: BRA target address

BRA stands for “Branch.” It transfers program execution to the target
address unconditionally. The target address for this instruction must be within 1K
of program memory. This is a 2-byte instruction. The first 5 bits is the opcode and
the rest is the signed number displacement, which is added to the PC (program
counter) of the instruction following the BRA to get the target address. Therefore,
in this branch, the target address must be within -1024 to +1023 bytes of the PC
(program counter) of the instruction after the BRA because the 11-bit address can
take values of +1024 to -1023. This address is often referred to as a relative
address because the target address is -1024 to +1023 bytes relative to the program
counter (PC).

BSF Bit Set fileReg
Function: Set bit
Syntax: BSF f, b, a

This sets HIGH the indicated bit of a file register. The bit can be any direct-
ly addressable bit of a port, register, or RAM location.

Examples:
BSF PORTR, 3 ;make PORTB.3 = 1
BSEF PORTC, 6 ;make PORTC.6 = 1
BSF MyReg, 2 ;make bit D2 of MyReg = 1
BSEF STATUS,C ;set Carry Flag C =1
BTFSC Bit Test fileReg, Skip if Clear
Function: Skip the next instruction if bit is 0
Syntax: BTFSC f, b,a

This instruction is used to test a given bit and skip the next instruction if
the bit is low. The given bit can be any of the bit-addressable bits of RAM, ports,
or registers of the PIC18.

Example: Monitor the PORTB.5 bit continuously and, when it becomes low, put
55H in WREG.

BSEF TRISB, 5 ;make PORTB.5 an input bit
HERE BTFSC PORTB,5 ;skip if PORTB.5 = 0

BRA HERE

MOVLW 0x55 ;because PORTB.5 = O,

;put 55H in WREG

A-18

Example: See if WREG has an even number. If so, make it odd.

BTFSC WREG, 0 ;skip 1if it is odd

BRA NEXT
ADDLW O0Ox1 ;1it is even, make it odd
NEXT :
BTFSS Bit Test fileReg, Skip if Set
Function: Skip the next instruction if bit is 1
Syntax: BTFSS £, b, a

This instruction is used to test a given bit and skip the next instruction if
the bit is HIGH. The given bit can be any of the bit-addressable bits of RAM,
ports, or registers of the PIC18.

Example: Monitor the PORTB.5 bit continuously and when it becomes
HIGH, put 55H in WREG.

BSF TRISB, 5 ;make PORTB.5 an input bit
HERE BTFSS PORTB,5 ;skip if PORTB.5 =1
BRA HERE

MOVLW 55H ;because PORTB.5 = 0 WREG = 55H

Example: See if WREG has an odd number. If so, make it even.

BTFSS WREG, O ;skip if it is even
BRA NEXT
ADDLW 0x01 ;1it is even, make it odd
NEXT:
BTG Bit Toggle fileReg
Function: Toggle (Complement) bit
Syntax: BTG f, b, a

This instruction complements a single bit. The bit can be any bit-address-
able location in the PICI18.

Example:
BCF TRISBE,O0 ;make PORTB.0 an output
AGAIN BTG PORTB, 0 ;complement PORTB.0O bit
BRA AGAIN ;continuously forever

Example: Toggle PORTB.7 a total of 150 times.

COUNTER SET 0x20 ;loc 20H for COUNTER
MOVLW ‘D' 150 ;WREG = 150
MOVWEF COUNTER ;COUNTER = 150
BCF TRISB,7 ;make PORTB.7 an output

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

OVER BTG PORTB.7 ; toggle PORTB.7
DECF COUNTER,F ;decrement and put it in

; COUNTER
BNZ OVER ;do it 150 times
BZ Branch if Zero
Function: Branchif Z=1
Syntax: BZ target address

Example: Keep checking PORTB for value 99H.

SETF TRISB ;port B as input
BACK MOVEW PORTB ;get PORTB into WREG
SUBLW 0x99 ;subtract 99H from it
Bz EXIT ;if 0x99, exit
BRA BACK ; keep checking
EXIT:
Example: Toggle PORTB 150 times.
MyReg SET 0x40 ;loc 40H for MyReg
SETEF TRISB ;port B as output
MOVLW D'150" ;WREG = 150
MOVWE MyReg
BACK COMF PORTB ;toggle PORTRB
DECF MyReqg, F ;decrement MyReg
BZ EXIT ;if MyReg = 0, exit
BRA BACK ; keep toggling
EXIT:

Notice that this is a 2-byte instruction; therefore, the target address cannot
be more than -128 to +127 bytes away from the program counter. See Branch
Condition for further discussion on this.

CALL

Function: Transfers control to a subroutine
Syntax: CALL k,s ;s 1s used for fast context switching

The Call intruction is a 4-byte instruction. The first 12 bits are used for the
opcode and the rest (20 bits) are set aside for the address. A 20-bit address allows
us to reach the target address anywhere in the 2M ROM space of the PIC18. If
calling a subroutine, the PC register (which has the address of the instruction after
the CALL) is pushed onto the stack and the stack pointer (SP) is incremented by
1. Then the program counter is loaded with the new address and control is trans-
ferred to the subroutine. At the end of the procedure, when RETURN is executed,
PC is popped off the stack, which returns control to the instruction after the CALL.

Notice that CALL is a 4-byte instruction, in which 12 bits are the opcode,
and the other 20 bits are the 20-bit address of an even address location. Because

A-20

all the PIC18 instructions are 2 bytes in size, the lowest address bit, A0, is auto-
matically set to zero to make sure that the CALL instruction will not land at the
middle of the targeted instruction. The 20-bit address of the CALL provides the
A20-A1 part of the address and with the A0 = 0, we have the 21-bit address need-
ed to go anywhere in the 2M address space of the PIC18.

We have two options for the “CALL k,s” instruction. They are s =0, and
s = 1. When s = 0, it is simply calling a subroutine. With s = 1, we are calling a
subroutine and we are also asking the CPU to save the three major registers of
WREG, STATUS, and BSR in internal buffers (shadow registers) for the purpose
of context-switching. This fast context-switching can be used only in the main
subroutine because the depth of the shadow registers is only one. That means no
nested call with the s = 1. Look at the following case:

ORG 0x0
MAIN ...
CALL M SUB,I ;call and save the registers
MOVLW 0x55 ;address of this instruction is saved on stack
ORG 0x2000
M SUB ...
CALL Y SUB ;we cannot use CALL'Y SUB,1
MOVLW 0xAA ;address of this instruction is saved on stack
RETURN,1 ;return to caller and restore the registers
;notice the s = 1 for RETURN
ORG 0x3000
Y SUB
RETURN
END

As shown in RETURN instruction, we also have two options for the
RETURN:s=0and s =1. If we use s = 1 for the CALL, we must also use s = 1
for the RETURN. Notice that “CALL Target” with no number after it is interpret-
ed as s = 0 by the assembler. Likewise, the “RETURN” with no number after it is
interpreted as s = 0 by the assembler.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

CLRF Clear fileReg

Function: Clear
Syntax: CLRF f, a

This instruction clears the entire byte in the fileReg. All bits of the register
are cleared to 0.

Example:
MyReg SET 0x20 ;loc 20H for MyReg
CLRF MyReg ;clear MyReg
CLRF TRISB ;clear TRISB (make PORTB output)
CLRFEF PORTB ;clear PORTB
CLRF TMRO1L ;TMROL = 0

Notice that in this instruction the result can be placed in fileReg only and
there is no option for the WREG to be used as the destination.

CLRWDT
Function: Clear Watchdog Timer
Syntax: CLRWDT

This instruction clears the Watchdog Timer.

COMF Complement the fileReg
Function: Complement a fileReg
Syntax: COMF {, d, a

This complements the contents of a given fileReg. The result is the 1's
complement of the register; that is, Os become 1s and 1s become 0s. The result
can be placed in WREG (if d = 0) or fileReg (if d = 1).

Example:
MOVLW 0x0 JWREG = 0
MOVWE TRISB ;Make PORTB an output port
MOVLW 0x55 ;WREG = 01010101
MOVWE PORTB
AGAIN COMF PORTB,F ;complement (toggle) PORTB
CALL DELAY
BRA AGAIN ;continuously (notice WREG = 55H)
Example:

MyReg SET 0x40;set MyReg loc at 0x40

MOVLW 0x39 ;W = 39H

MOVWF MyReg ;MyReg = 39H

COMPF MyReg,F ;MyReg = C6H and WREG = 39H
Where 39H (0011 1001 bin) becomes C6H (1100 0110).

A-22

Example:
MyReg SET 0x40;set MyReg loc at 0x40
MOVLW 0x55 ;W = 55H
MOVWF MyReg ;MyReg = 55H
COMPF MyReg,F ;MyReg AAH, WREG = 55H

where 55H (0101 0101) becomes AAH (1010 1010).

Example: Toggle PORTB 150 times.

COUNTER SET 0x40 ;loc 40H for COUNTER

SETEF TRISB ;port B as output
MOVLW D'150" ;WREG = 150

MOVWE COUNTER ;COUNTER = 150
MOVLW 0x55 ;WREG = 55H

MOVWE PORTB
BACK COMF PORTE, F ;toggle PORTRB
DECF COUNTER, F ;decrement COUNTER
BNZ BACK ;toggle until counter becomes 0

We can place the result in WREG as shown in the examples below:

MyReg SET 0x40 ;set MyReg loc at 0x40
MOVLW 0x39 ;W = 39H
MOVWF MyReg ;MyReg = 39H
COMPF MyReg ;MyReg = 39H and WREG = C6H

Example:
MyReg SET 0x40 ;set MyReg loc at 0x40
MOVLW 0x55 ;W = 55H
MOVWF MyReg ;MyReg = 55H
COMPF MyReqg ;WREG = AA and MyReg 55H SETF

CPFSEQ Compare FileReg with WREG and skip if equal (F = W)

Function: Compare fileReg and WREG and skip if they are equal
Syntax: CPFSEQ f, a

The magnitudes of the fileReg byte and WREG byte are compared. If they
are equal, it skips the next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get
out only when PORTB has the value 99H.

SETEF TRISB ; PORTB an input port
MOVLW 0x99 ;WREG = 9%9h

BACK CPFSEQ PORTB ;skip if PORTB has 0x99
BRA BACK ; keep monitoring

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

Notice that CPFSEQ skips only when fileReg and WREG have equal val-
ues.

CPFSGT Compare FileReg with WREG and skip if greater (F > W)

Function: Compare fileReg and WREG and skip if fileReg > WREG.
Syntax: CPFSGT {, a

The magnitudes of the fileReg byte and WREG byte are compared. If
fileReg is larger than the WREG, it skips the next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get
out only when PORTB has a value greater than 99H.

SETEF TRISB ; PORTB an input port
MOVLW 0x99 ;WREG = 99H

BACK CPEFSGT PORTB ;skip if PORTB > 99H
BRA BACK ; keep monitoring

Notice that CPFSGT skips only if FileReg is greater than WREG.

CPFSLT Compare FileReg with WREG and skip if less than (F <W)

Function: Compare fileReg and WREG and skip if fileReg < WREG.
Syntax: CPFSLT f, a

The magnitudes of the fileReg byte and WREG byte are compared. If
fileReg is less than the WREG, it skips the next instruction.

Example: Keep monitoring PORTB indefinitely for the value of 99H. Get
out only when PORTB has a value less than 99H.

SETEF TRISB ; PORTB an input port
MOVLW 0x99 ;WREG = 99H

BACK: CPFSEQ PORTB ;skip if PORTB < 99H
BRA BACK ; keep monitoring

Notice that CPFSLT skips only if FileReg < WREG.

DAW

Function: Decimal-adjust WREG after addition
Syntax: DAW

This instruction is used after addition of BCD numbers to convert the result
back to BCD. The data is adjusted in the following two possible cases:

1. It adds 6 to the lower 4 bits of WREG if it is greater than 9 or if DC = 1.
2. It also adds 6 to the upper 4 bits of WREG if it is greater than 9 or if C = 1.

A-24

Example:

MOVLW 0x47 ;WREG = 0100 0111
ADDLW 0x38 ;WREG = 47H + 38H = 7FH,
;invalid BCD
DAW ;WREG = 1000 0101 = 85H, wvalid BCD
47H
+ 38H

7FH (invalid BCD)
+ ©6H (after DAW)
85H (valid BCD)

In the above example, because the lower nibble was greater than 9, DAW
added 6 to WREG. If the lower nibble is less than 9 but DC = 1, it also adds 6 to
the lower nibble. See the following example:

MOVLW 0x29 ;WREG = 0010 1001
ADDLW 0x18 ;WREG = 0100 0001 INCORRECT
DAW ;WREG = 0100 0111 = 47H VALID BCD
29H

+_18H
41H (incorrect result in BCD)

+_6H

47H correct result in BCD

The same thing can happen for the upper nibble. See the following example:

MOVLW 0x52 ;WREG = 0101 0010
ADDLW 0x91 ;WREG = 1110 0011 INVALID BCD
DAW ;WREG = 0100 0011 AND C =1
52H
+_ 91H
E3H (invalid BCD)
+6 (after DAW, adding to upper nibble)
143H valid BCD

Similarly, if the upper nibble is less than 9 and C = 1, it must be corrected.
See the following example:

MOVLW 0x94 ;W = 1001 0100
ADDLW 0x91 ;W = 0010 0101 INCORRECT
DAW ;W = 1000 0101, VALID BCD

;FOR 85, C =1

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

94H

+_91H

1 25H (incorrect BCD)

+6 (after DAW, adding to upper nibble)
185

It is possible that 6 is added to both the high and low nibbles. See the fol-
lowing example:

MOVLW 0x54 ;WREG = 0101 0100
ADDLW 0x87 ;WREG = 1101 1011 INVALID BCD
DAW ;WREG = 0100 0001, C = 1 (BCD 141)
54H
+ 87H
DBH (invalid result in BCD)
+ 6 6H
1 4 1H valid BCD
DECF Decrement fileReg
Function: Decrement fileReg
Syntax: DECF f{, d, a

This instruction subtracts 1 from the byte operand in fileReg. The result
can be placed in WREG (if d = 0) or fileReg (if d = 1).

Example:
MyReg SET 0x40 ;set aside loc 40H for MyReg
MOVLW 0x99 ;WREG = 99H
MOVWE MyReg ;MyReg = 99H

DECF MyReqg, F ; MyReg
DECF MyReqg, F ; MyReg
DECF MyReqg, F ; MyReg

98H, WREG 99H
97H, WREG 99H
96H, WREG 99H

Example: Toggle PORTB 250 times.

COUNTER SET 0x40 ;loc 40H for COUNTER

SETEF TRISB ; PORTB as output
MOVLW D'250" ;WREG = 250
MOVWE COUNTER ;COUNTER = 250
MOVLW 0x55 ;WREG = 55H

MOVWE PORTB
BACK COMF PORTEB, F ;toggle PORTRB
DECF COUNTER, F ;decrement COUNTER
BNZ BACK ;toggle until counter becomes 0

A-26

We can place the result in WREG as shown in the examples below:

MyReg SET 0x40 ;set aside loc for MyReg

MOVLW 0x99 ;WREG = 99H

MOVWE MyReg ;MyReg = 99H

DECF MyReg ;WREG = 98H, MyReg = 99H

DECF MyReqg ;WREG = 97H, MyReg = 99H

DECF MyReg ;WREG = 96H, MyReg = 99H
Example:

MyReg SET 0x50 ;set MyReg loc at 0x50

MOVLW 0x39 ;W = 39H

MOVWF MyReg ;MyReg = 39H

DECF MyReg ;WREG = 38H and MyReg = 39H
DECF MyReg ;WREG = 37H and MyReg = 39H
DECF MyReg ;WREG = 36H and MyReg = 39H
DECF MyReg ;WREG = 35H and MyReg = 39H
DECFSZ Decrement fileReg and Skip if zero
Function: Decrement fileReg and skip if fileReg has zero in it
Syntax: DECFSZ £, d, a

This instruction subtracts 1 from the byte operand of fileReg. If the result
is zero, then it skips execution of the next instruction.

Example: Toggle PORTB 250 times.

COUNT SET 0x40 ;loc 40H for COUNT
CLRF TRISB ; PORTB an output
MOVLW D'250'" ;WREG = 250
MOVWE COUNT ; COUNT = 250
MOVLW 0x55 ;WREG = 55H

MOVWE PORTB
BACK COMF PORTEB, F ;toggle PORTRB
DECFSZ COUNT,F ;decrement COUNT and
;skip if zero
BRA BACK ;toggle until counter becomes 0

DECFSNZ Decrement fileReg and skip if not zero
Function: Decrement fileReg and skip if fileReg has other than zero
Syntax: DECFSNZ f, d, a

This instruction subtracts 1 from the byte operand of fileReg. If the result
is not zero, then it skips execution of the next instruction.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

Example: Toggle PORTB 250 times continuously.

COUNT SET 0x40 ;loc 40H for COUNT
CLRFEF TRISB ; PORTB an output
OVER MOVLW D'250" ;WREG = 250
MOVWE COUNT ; COUNT = 250
MOVLW 0x55 ;WREG = 55H

MOVWE PORTB
BACK COMF PORTEB, F ;toggle PORTRB
DECFSNZ COUNT,F ;decrement COUNT and
;skip if zero
BRA OVER ;start over
BRA BACK ;toggle until counter becomes 0

GOTO Unconditional Branch
Function: Transfers control unconditionally to a new address.
Syntax: GOTO k

In the PIC18 there are two unconditional branches (jumps): GOTO (long

jump) and BRA (short jump). Each is described next.

1.

GOTO (long jump): This is a 4-byte instruction. The first 12 bits are the
opcode, and the next 20 bits are an even address of the target location. Because
all the PIC18 instructions are 2 bytes in size, the lowest address bit, A0, is
automatically set to zero to make sure that the GOTO instruction will not land
at the middle of the targeted instruction. The 20-bit address of the GOTO pro-
vides the A20-A1 part of the address and with A0 = 0, we have the 21-bit
address needed to go anywhere in the 2M address space of the PIC18.

BRA: This is a 2-byte instruction. The first 5 bits are the opcode and the
remaining 11 bits are the signed number displacement, which is added to the
PC (program counter) of the instruction following the BRA to get the target
address. Therefore, for the BRA instruction the target address must be
within-1023 to +1024 bytes of the PC of the instruction after the BRA because
a 11-bit address can take values of +1023 to -1024.

While GOTO is used to jump to any address location within the 2M code
space of the PIC18, BRA is used to jump to a location within the 1K ROM
space. The advantage of BRA is the fact that it takes 2 bytes of program ROM,
while GOTO takes 4 bytes. BRA is widely used in chips with a small amount
of program ROM and a limited number of pins.

Notice that the difference between GOTO and CALL is that the CALL
instruction will return and continue execution with the instruction following
the CALL, whereas GOTO will not return.

A-28

INCF Increment fileReg

Function: Increment
Syntax: INCF £, d, a

This instruction adds 1 to the byte operand in fileReg. The result can be
placed in WREG (if d = 0) or fileReg (if d = 1).

Example:
MyReg SET 0x40 ;set aside loc 40H for MyReg
MOVLW 0x99 ;WREG = 99H

MOVWE MyReg

INCF MyReg,F ;MyReg = 9AH, WREG 99H
INCF MyReg,F ;MyReg = 9BH, WREG 99H
DECF MyReg,F ;MyReg = 9CH, WREG 99H

Example: Toggle PORTB 5 times.

COUNTER SET 0x40 ;loc 40H for COUNTER

SETEF TRISB ; PORTB as output
MOVLW D" 251’ ;WREG = 251
MOVWE COUNTER ;COUNTER = 251
MOVLW 0x55 ;WREG = 55H

MOVWE PORTB
BACK COMF PORTE, F ;toggle PORTR
INCEF COUNTER,F ;INC COUNTER
BNC BACK ;toggle until counter becomes 0

We can place the result in fileReg as shown in the examples below:

MyReg SET 0x40 ;set aside loc for MyReg

MOVLW 0x99 ;WREG = 99H

MOVWE MyReg ;MyReg = 99H

INCFE MyReg ;WREG = 9AH, MyReg = 99H

INCFE MyReg ;WREG = 9BH, MyReg = 99H
Example:

MyReg SET 0x40 ;set MyReg loc at 0x40

MOVLW 0x5 ;W = 05H

MOVWF MyReg ;MyReg = 05H
INCF MyReg ;WREG = 06H and MyReg = 05H

INCFSZ Increment fileReg and skip if zero
Function: Increment
Syntax: INCFSZ f, d, a

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

This instruction adds 1 to fileReg and if the result is zero it skips the next
instruction.

Example: Toggle PORTB 156 times.

COUNTER SET 0x40 ;loc 40H for COUNTER

SETEF TRISB ; PORTB as output
MOVLW D'156" ;WREG = 156
MOVWE COUNTER ;COUNTER = 156
MOVLW 0x55 ;WREG = b55H

MOVWE PORTB

BACK COMF PORTEB, F ;toggle PORTRB
INCFSZ COUNTER,F ;INC COUNTER and skip if O
BRA BACK ;toggle until counter becomes 0

INCFSNZ Increment fileReg and skip if not zero

Function: Increment
Syntax: INFSNZ f, d, a

This instruction adds 1 to the register or memory location specified by the
operand. If the result is not zero, it skips the next instruction.

Example: Toggle PORTB 156 times continuously.

COUNTER SET 0x40 ;loc 40H for COUNTER

SETEF TRISB ; PORTB as output
OVER MOVLW D'1l56" ;WREG = 156

MOVWE COUNTER ;COUNTER = 156

MOVLW 0x55 ;WREG = 55H

MOVWE PORTB
BACK COMF PORTB, F ;toggle PORTR
INCFSNZ COUNTER, F; INC COUNTER, skip if not O
BRA OVER ;start over
BRA BACK ;toggle until counter becomes 0

IORLW OR K value with WREG
Function: Logical-OR WREG with value k
Syntax: IORLW k

This performs a logical OR on the WREG register and k value, bit by bit,

and stores the result in WREG.

A B|AORB
Example: 0 0 0
MOVLW 0x30 ;W = 30H 0 1 1
IORLW 0x09 ;now W = 39H 1 2 1

A-30

39H 0011 0000
09H 0000 1001
39 0011 1001
Example:
MOVLW 0x32 ;W = 32H
IORLW 0x50 ; (W = T72H)
32H 0011 0010
50H 0101 0000
72H 0111 0010
IORWF OR FileReg with WREG
Function: Logical-OR fileReg and WREG
Syntax: IORWF f, d, a

This performs

a logical OR on the fileReg value and the WREG register,

bit by bit, and places the result in WREG (if d = 0) or fileReg (if d = 1).

Example:
MyReg SET 0x40;set MyReg loc at 0x40
MOVLW 0x39 ;WREG = 39H
MOVWF MyReg ;MyReg = 39H
MOVLW 0x07
IORWF MyReg ;39H ORed with 07 (W = 3F)
39 0011 1001
Q7 0000 0111
3F 0011 1111
Example:
MyReg SET 0x40;set MyReg loc at 0x40
MOVLW 0x5 ;WREG = 05H
MOVWF MyReg ;MyReg = 05H
MOVLW 0x30
IORWF MyReg ;30H ORed with 05 (W = 35H)
05 0000 0101
30 0011 0000
35 0011 0101

We can place the result in fileReg as shown in the examples below:

MOVLW 0x30

IORWE PORTB, F

;W = 30H
;W and PORTB are ORed and result
;goes to PORTB

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

Example:

MyReg SET 0x20

MOVLW 0x54 ;WREG = 54H
MOVWE MyReg

MOVLW 0x67 ;WREG = 67H

IORWF MyReqg,F ;OR WREG and MyReg
;after the operation MyReg = 77H

44H 0101 0100
67H 0110 0111
77H 0111 0111 Therefore MyReg will have 77H, WREG = 54H.

LFSR Load FSR

Function: Load into FSR registers a 12-bit value of k
Syntax: LFSR fk ;k is between 000 and FFFH

This loads a 12-bit value into one of the FSR registers of FSRO, FSR1, or
FSR2.

LFSR 0 , 0x200 ;FSRO 200H

LFSR 1 , 0x050 ;FSR1 = 050H

LFSR 2 , 0x160 ;FSR2 160H

This is widely used in register indirect addressing mode. See Chapter 6.

MOVF (or MOVFW) Move fileReg to WREG

Function: Copy byte from fileReg to WREG
Syntax MOVF f, d, a:

This instruction is widely used for moving data from a fileReg to WREG. Look
at the following examples:

CLRF TRISC ; PORTC output

SETF TRISB ; PORTB as input
MOVEW PORTB ;copy PORTB to WREG
ANDLW O0x0F ;mask the upper 4 bits
MOVWEF PORTC ;put it in PORTC
Example:

CLRF TRISD ; PORTD as output
SETF TRISB ; PORTB as input
MOVEW PORTB ;copy PORTB to WREG
IORW 0x30 ;OR it with 30H
MOVWEF PORTD ;put it in PORTD

This instruction can be used to copy the fileReg to itself in order to get the status
of the N and Z flags. Look at the following example.

A-32

Example:

MyReg SET 0x20 ;set aside loc 0x20 to MyReg
MOVLW 0x54 ;W = 54H

MOVWE MyReg ;MyReg = 54H

MOVEW MyReqg,F ;My Reg = 54, also N = 0 and Z = 0

MOVFF Move FileReg to Filereg

Function: Copy byte from one fileReg to another fileReg
Syntax: MOVFF fs, fd

This copies a byte from the source location to the destination. The source
and destination locations can be any of the file register locations, SFRs, or ports.

MOVEF PORTB, MyReg
MOVEF PORTC, PORTD
MOVEF RCREG, PORTC
MOVEF Regl, REG2

Notice that this a 4-byte instruction because the source and destination
address each take 12 bits of the instruction. That means the 24 bits of the instruc-
tion are used for the source and destination addresses. The 12-bit address allows

data to be moved from any source location to any destination location within the
4K RAM space of the PIC18.

MOVLB Move Literal 4-bit value to lower 4-bit of the BSR
Function: Move 4-bit value k to lower 4 bits of the BSR registers
Syntax: MOVLB k ;k is between 0 and 15 (0—F in hex)

We use this instruction to select a register bank other than the access bank.
With this instruction we can load into the BSR (bank selector register) a 4-bit value
representing one of 16 banks supported by the PIC18. That means the values
between 0000 and 1111 (0—F in hex). For examples of the MOVLB instruction,
see Chapter 6 and Section A.1 in this chapter.

MOVLW K Move Literal to WREG

Function: Move 8-bit value k to WREG

Syntax: MOVLW k ks between 0 and 255 (0—FF in hex)
Example:

MOVLW 0x55 ;WREG = 55H

MOVLW 0x0 ;clear WREG (WREG = 0)

MOVLW 0xC2 ;WREG = C2H

MOVLW Ox7F ;WREG = 7FH

This instruction, along with the MOV WEFE, is widely used to load fixed val-
ues into any port, SFR, or fileReg location. See the next instruction to see how it
is used.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

MOVWF Move WREG to a fileReg

Function:
Syntax:

Copy the WREG contents to a fileReg
MOVWEF f, a

This copies a byte from WREG to fileReg. This instruction is widely used
along with the MOVLW instruction to load any of the fileReg locations, SFRs, or
PORTs with a fixed value. See the following examples:

Example: Toggle PORTB.

MOVLW 0x55 ;WREG = 55H

MOVWE' PORTB

MOVLW OxAA ;WREG = AAH

MOVWE PORTB

BRA OVER ; keep toggling the PORTB

Example: Load RAM location 20H with value 50H.

MyReg SET 0x20 ;set aside the loc 0x20 for MyReg
MOVLW 0x50
MOVWE MyReg ;MyReg = 50H (loc 20H has 50H)

Example: Initialize the Timer0O low and high registers.

MOVLW 0x05 ;WREG = 05H

MOVWE TMROH ; TMROH = 0x5

MOVLW 0x30 ;WREG = 30H

MOVWE TMROL ; TMROL = 0x30
MULLW Multiply Literal with WREG

Function: Multiply k x WREG

Syntax: MULLW k

This multiplies an unsigned byte k by an unsigned byte in register WREG
and the 16-bit result is placed in registers PRODH and PRODL, where PRODL
has the lower byte and PRODH has the higher byte.

Example:
MOVLW 0x5 ;WREG = b5H
MULLW 0x07 ;PRODL = 35 = 23H, PRODH = 00
Example:
MOVLW Ox0A ;WREG = 10
MULLW OxOF ;PRODL = 10 x 15 = 150 = 96H
; PRODH = 00
Example:
MOVLW 0x25
MULLW 0x78 ; PRODL = 58H, PRODH = 11H
;because 25H x 78H = 1158H

A-34

Example:

MOVLW D'100' ;WREG = 100
MULLW D'200' ; PRODL = 20H, PRODH = 4EH
; (100 x 200 = 20,000 = 4E20H)
MULWF Multiply WREG with fileReg
Function: Multiply WREG x fileReg and place the result in
PRODH:PROFDL registers
Syntax: MULWEF f, a

This multiplies an unsigned byte in WREG by an unsigned byte in the
fileReg register and the result is placed in PRODL and PRODH, where PRODL

has the lower byte and PRODH has the higher byte.

Example:
MyReg SET 0x20 ;MyReg has location of 0x20
MOVLW 0x5
MOVWE MyReg ;MyReg has 0x5
MOVLW 0x7 ;WREG = 0x7
MULWE MyReg ;PRODL = 35 = 23H, PRODH = 00
Example:
MOVLW OxOA
MOVWE MyReg ;MyReg = 10
MOVLW OxOQOF ;WREG = 15
MULFW MyReg ;PRODL = 150 = 96H, PRODH = 00
Example:
MOVLW 0x25
MOVWE MyReg ;MyReg = 0x25
MOVLW 0x78 ;WREG 78H
MULWE Myreg ;PRODL = 58H, PRODH = 11H
; (25H x 78H = 1158H)
Example:
MOVLW D'100' ;WREG = 100
MOVWE MyReg ;MyReg = 100
MOVLW D'200' ;WREG = 200
MULWE MyReg ;PRODL = 20H, PRODH = 4EH
; (100 x 200 = 20,000 = 4E20H)
NEGF Negate fileReg
Function: No operation
Syntax: NEGF f, a

This performs 2’s complement on the value stored in fileReg and places it

back in fileReg.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

Example:

MyReg SET 0x30

MOVLW 0x98 ;WREG = 0x98

MOVWE MyReg ;MyReg = 0x98

NEGF ;2" s complement fileReg

98H 10011000

01100111 1’ s complement
+ 1
01101000 Now FileReg = 68H
Example:

MyReg SET 0x10
MOVLW 0x75 ;WREG = 0x75
MOVWE MyReg ;MyReg = 0x75
NEGF ;2" s complement fileReg

75H 01110101

10001010 1’ s complement
+ 1
10001011 Now FileReg = 7AH

Notice that in this instruction we cannot place the result in the WREG
register.

NOP No Operation
Function: No operation
Syntax: NOP

This performs no operation and execution continues with the next instruc-
tion. It is sometimes used for timing delays to waste clock cyles. This instruction
only updates the PC (program counter) to point to the next instruction following
NOP. In PIC18, this a 2-byte instruction.

POP POP Top of Stack
Function: Pop from the stack
Syntax: POP

This takes out the top of stack (TOS) pointed to by SP (stack pointer) and
discards it. It also decrements SP by 1. After the operation, the top of the stack will
be the value pushed onto the stack previously.

PUSH PUSH Top of the Stack
Function: Push the PC onto the stack
Syntax: PUSH

This copies the program counter (PC) onto the stack and increments SP by
1, which means the previous top of the stack is pushed down.

A-36

RCALL Relative Call

Function: Transfers control to a subroutine within 1K space
Syntax: RCALL target address

There are two types of CALLs: RCALL and CALL. In RCALL, the target
address is within 1K of the current PC (program counter). To reach the target
address in the 2M ROM space of the PIC18, we must use CALL. In calling a sub-
routine, the PC register (which has the address of the instruction after the RCALL)
is pushed onto the stack and the stack pointer (SP) is incremented by 1. Then the
program counter is loaded with the new address and control is transferred to the
subroutine. At the end of the procedure, when RETURN is executed, PC is popped
off the stack, which returns control to the instruction after the RCALL.

Notice that RCALL is a 2-byte instruction, in which 5 bits are used for the
opcode and the remaining 11 bits are used for the target subroutine address. An 11-
bit address limits the range to —1024 to +1023. See the CALL instruction for dis-
cussion of the target address being anywhere in the 2M ROM space of the PIC18.
Notice that RCALL is a 2-byte instruction while CALL is a 4-byte instruction.
Also notice that the RCALL does not have the option of context saving, as CALL

has.

RESET Reset (by software)
Function: Reset by software
Syntax: RESET

This instruction is used to reset the PIC18 by way of software. After
execution of this instruction, all the registers and flags are forced to their reset con-
dition. The reset condition is created by activating the hardware pin MCLR. In
other words, the RESET instruction is the software version of the MCLR pin.

RETFIE Return from Interrupt Exit
Function: Return from interrupt
Syntax: RETFIE s

This is used at the end of an interrupt service routine (interrupt handler).
The top of the stack is popped into the program counter and program execution
continues at this new address. After popping the top of the stack into the program
counter (PC), the stack pointer (SP) is decremented by 1.

Notice that while the RETURN instruction is used at the end of a subrou-
tine associated with the CALL and RCALL instructions, RETFIE must be used for
the interrupt service routines (ISRs).

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

RETLW Return with Literal in WREG

Function: The k value is placed in WREG and the top of the stack is
the placed in PC (program counter)
Syntax: RETLW k

After execution of this instruction, the k value is loaded into WREG and
the top of the stack is popped into the program counter (PC). After popping the
top of the stack into the program counter, the stack pointer (SP) is decremented by
1. This instruction is used for the implementation of a look-up table. See Section
6.3 in Chapter 6.

RETURN Return
Function: Return from subroutine
Syntax: RETURN S ;where s=0ors =1

This instruction is used to return from a subroutine previously entered by
instructions CALL or RCALL. The top of the stack is popped into the program
counter (PC) and program execution continues at this new address. After popping
the top of the stack into the program counter, the stack pointer (SP) is decrement-
ed by 1. For the case of “RETURN s” where s = 1, the RETURN will also
restore the context registers. See the CALL instruction for the case of s = 1. Notice
that “RETURN 1” cannot be used for subroutines associated with RCALL.

RLCF Rotate Left Through Carry the fileReg

Function: Rotate fileReg left through carry
Syntax: RLCF f,d, a

This rotates the bits of a
fileReg register left. The bits rotated
out of fileReg are rotated into C, and L
the C bit is rotated into the opposite CY <
end of the fileReg register.

Example:
MyReg SET 0x30 ;set aside loc 30H for MyReg
BCF STATUS,C ;C = 0
MOVLW 0x99 ;WREG = 99H
MOVWE MyReg ;MyReg = 99H = 10011001
RLCF MyReg, F ;now MyReg = 00110010 and
;C =1
RLCF MyReg, F ;now MyReg = 01100101 and
;C =0

A-38

RLNCF Rotate left not through Carry

Function: Rotate left the fileReg
Syntax: RLNCF f,d, a

This rotates the bits of a fileReg
register left. The bits rotated out of
fileReg are rotated back into fileReg at <| MSB LSB
the opposite end.

Example:
MyReg SET 0x20 ;set aside loc 20 for MyReg
MOVLW 0x69 ;WREG = 01101001
MOVWE MyReg ;MyReg = 69H = 01101001

RLNCF MyReg,F ;now MyReg = 11010010
RLNCF MyReg,F ;now MyReg = 10100101
RLNCF MyReqg,F ;now MyReg 01001011
RLNCF MyReg,F ;now MyReg 10010110
Notice that after four rotations, the upper and lower nibbles are swapped.

RRCF Rotate Right through Carry

Function: Rotate fileReg right through carry
Syntax: RRCF f,d, a

This rotates the bits of a
fileReg register right. The bits rotated L
out of the register are rotated into C,
and the C bit is rotated into the
opposite end of the register.

MSB ——LSB [— CY

Example:

MyReg SET 0x20 ;set aside loc 20 for MyReg
BSF STATUS,C ;C =1
MOVLW 0x99 ;WREG = 10011001
MOVWE MyReg ;MyReg = 99H = 10011001
RRCEF MyReg,F ;now MyReg 11001100, C =1
RRCF MyReqg,F ;now MyReg 11100110, C

Il
o

RRNCF Rotate Right not through Carry

Function: Rotate fileReg right
Syntax: RRNCF f,d, a

This rotates the bits of a fileReg reg-
ister right. The bits rotated out of the register L

are rotated back into fileReg at the opposite
end.

MSB ——> LSB |»

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

Example:
MyReg SET 0x20 ;set aside loc 20H for MyReg

MOVLW 0x66 ;WREG = 66H = 01100110
MOVWE MyReg ;MyReg = 66H = 01100110
RRNCF MyReg,F ;now MyReg = 00110011
RRNCF MyReg,F ;now MyReg = 10011001
RRNCF MyReg,F ;now MyReg = 11001100
RRNCF MyReg,F ;now MyReg = 01100110

Example: We can use this instruction to swap the upper and lower nibbles.
MyReg SET 0x20 ;set aside loc 20H for MyReg

MOVLW 0x36 ;WREG = 36H = 00110110

MOVWE MyReg ;MyReg = 36H = 00110110

RRNCF MyReg,F ;now MyReg = 00011011

RRNCF MyReg,F ;now MyReg 10001101

RRNCF MyReg,F ;now MyReg 11000110

RRNCF MyReg,F ;now MyReg 01100011 = 63H

SETF Set fileReg
Function: Set
Syntax: SETF f, a

This instruction sets the entire byte in fileReg to HIGH. All bits of the reg-
ister are set to 1.

Examples:
SETF MyReg ;MyReg = 11111111
SETF TRISB ;TRISB = FFH, (makes PORTB input)
SETE PORTC ;PORTC = 1111 1111

Notice that in this instruction, the result can be placed in fileReg only and
there is no option for WREG to be used as the destination for the result.

SLEEP Enter Sleep mode
Function: Put the CPU into sleep mode
Syntax: SLEEP

This instruction stops the oscillator and puts the CPU into sleep mode. It
also resets the Watchdog Timer (WDT). The WDT is used mainly with the SLEEP
instruction. Upon execution of the SLEEP instruction, the entire microcontroller
goes into sleep mode by shutting down the main oscillator and by stopping the
Program Counter from fetching the next instruction after SLEEP. There are two
ways to get out of sleep mode: (a) an external event via hardware interrupt, (b) the
internal WDT interrupt. Upon wake-up from a WDT interrupt, the microcontroller
resumes operation by executing the next instruction after SLEEP.

Check the Microchip Corp. website for application notes on WDT.

A-40

SUBFWB Subtract fileReg from WREG with borrow

Function: WREG — fileReg — #borrow ;#borrow is inverted carry
Syntax: SUBFWB f, d, a

This subtracts fileReg and the Carry (borrow) flag from WREG and puts
the result in WREG (d = 0) or fileReg (d = 1). The steps for subtraction performed
by the internal hardware of the CPU are as follows:

Take the 2's complement of the fileReg byte.

Add this to register WREG.

Add the inverted Carry (borrow) flag to the result.

Ignore the Carry.

Examine the N (negative) flag for positive or negative result.

M e

Example:
MyReg SET 0x20 ;set aside loc 0x20 for MyReg
BSF STATUS,C ;make Carry = 1
MOVLW 0x45 ;WREG 45H
MOVWE MyReg ;MYReg = 45H
MOVLW 0x23
SUBWE MyReg ;WREG = 45H - 23H - 0 = 22H

45H 0100 0101 0100 0101
-23H 0010 0011 2/s comp + 1101 1101
Inverted carry+ 0

+22H 0010 0010
Because D7 (the N flag) is 0, the result is
positive.

This instruction sets the negative flag according to the following:
N
WREG > (fileReg + #C) 0 the result is positive
WREG = (fileReg + #C) 0 the result is 0
WREG < (fileReg + #C) 1 the result is negative and in 2's comp

SUBLW Subtract WREG from Literal value

Function: Subtract WREG from literal value k (WREG =k — WREGQG)
Syntax: SUBLW k

This subtracts the WREG value from the literal value k and puts the result
in WREG. The steps for subtraction performed by the internal hardware of the
CPU are as follows:

Take the 2's complement of the WREG value.

Add it to literal value k.

Ignore the Carry.

Examine the N (negative) flag for positive or negative result.

b=

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

MOVLW 0x23 ;WREG 23H

SUBLW 0x45 ;WREG = 45H - 23H = 22H
45H 0100 0101 0100 0101
-23H 0010 0011 2/s comp +1101 1101
+22H 0010 0010

Because D7 (the N flag) is 0, the result is
positive.

This instruction sets the negative flag according to the following:

N
Literal value k > WREG 0 the result is positive
Literal value k = WREG 0 the result is 0
Literal value < WREG 1 the result is negative and in 2's comp
Example:

MOVLW 0x98 ;WREG 98H

SUBLW 0x66 ;WREG = 66H - 98H = CEH

66H 0110 0110 0110 0110

-98H 1001 1000 2" s comp +0110 1000

CEH 1100 1110

Because D7 (the N flag) is 1, the result is
negative and in 2’ s comp.

SUBWF Subtract WREG from fileReg

Function: Subtract WREG from fileReg (Dest = fileReg — WREQG)
Syntax: SUBWF f, d, a

This subtracts the WREG value from the fileReg value and puts the result

in either WREG (d = 0) or fileReg (d = 1). The steps for subtraction performed by
the internal hardware of the CPU are as follows:

b=

Take the 2's complement of the WREG byte.

Add this to the fileReg register.

Ignore the carry.

Examine the N (negative) flag for positive or negative result.

Example:
MyReg SET 0x20 ;set aside loc 0x20 for MyReg
MOVLW 0x45 ;WREG 45H
MOVWF MyReg ;MYReg = 45H
MOVLW 0x23 ;WREG = 23H

SUBWF MyReg,F ;MyReg = 45H - 23H = 22H

A-42

45H 0100 0101 0100 0101
-23H 0010 0011 2/s comp +1101 1101

+22H 0010 0010
Because D7 (the N flag) is 0, the result is

positive.

This instruction sets the negative flag according to the following:
N
fileReg > WREG 0 the result is positive
fileReg = WREG 0 the result is 0
fileReg < WREG 1 the result is negative and in 2's comp

SUBWFB Subtract WREG from fileReg with borrow

Function: Dest = fileReg — WREG — #borrow ;#borrow is inverted carry
Syntax: SUBWFB, d, a

This subtracts the WREG value and the inverted borrow (carry) flag from
the fileReg value and puts the result in WREG (if d = 0), or fileReg (if d = 1). The
steps for subtraction performed by the internal hardware of the CPU are as fol-

lows:
1. Take the 2's complement of WREG.
2. Add this to fileReg.
3. Add the inverted Carry flag to the result.
4. Ignore the carry.
5. Examine the N (negative) flag for positive or negative result.
Example:
MyReg SET 0x20 ;set aside loc 0x20 for MyReg
BSF STATUS, C ;C =1
MOVLW 0x45 ;WREG 45H
MOVWF MyReg ;MYReg = 45H
MOVLW 0x23 ;WREG = 23H

SUBWFB MyReg,F ;MyReg = 45H - 23H - 0 = 22H

45H 0100 0101 0100 0101
-23H 0010 0011 2/s comp +1101 1101

Inverted carry + 0
+22H 0010 0010

Because D7 (the N flag) is 0, the result is
positive.

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

This instruction sets the negative flag according to the following:
N
fileReg > (WREG + #C) 0 the result is positive
fileReg = (WREG + #C) 0 the result is 0
fileReg < (WREG + #C) 1 the result is negative and in 2's comp

SWAPF Swap Nibbles in fileReg
Function: Swap nibbles within fileReg
Syntax: SAWPF f, d, a

The SWAPF instruction interchanges the lower nibble (D0-D3) with the
upper nibble (D4-D7) inside fileReg. The result is placed in WREG (d = 0) or
fileReg (d = 1).

Example:
MyReg SET 0X20 ;set aside loc 20H for MyReg
MOVLW Ox59H ;W = 59H (0101 1001 in binary)
MOVWE MyReg ;MyReg = 59H (0101 1001)
SWAPF MyReg,F ;MyReg = 95H (1001 0101)

TBLRD Table Read
Function: Read a byte from ROM to the TABLAT register
Syntax: TBLRD *
TBLRD *+
TBLRD *-
TBLRD +*

This instruction moves (copies) a byte of data located in program (code)
ROM into the TableLatch (TABLAT) register. This allows us to put strings of data,
such as look-up table elements, in the code space and read them into the CPU. The
address of the desired byte in the program space (on-chip ROM) is held by the
TBLPTR register. Table A-6 shows the auto-increment feature of the TBLRD
instruction.

Table A-6: PIC18 Table Read Instructions

Instruction Function

TBLRD* Table Read After read, TBLPTR stays the same
TBLRD*+ Table Read with post-increment (Read and increment TBLPTR)
TBLRD*- Table Read with post-decrement (Read and decrement TBLPTR)
TBLRD+* Table Read with pre-increment (increment TBLPTR and read)

Note: A byte of data is read into the TABLAT register from code space pointed to by
TBLPTR.

Example: Assume that an ASCII character string is stored in the on-chip
ROM program memory starting at address SO0H. Write a program to bring each
character into the CPU and send it to PORTB.

A-44

ORG 0000H ;burn into ROM starting at O
MOVLW LOW (MESSAGE) ;WREG = 00 low-byte addr.

MOVWF TBLPTRL ;look-up table low-byte addr
MOVLW HIGH (MESSAGE) ;WREG = 05 = high-byte addr
MOVWE TBLPTRH ;look-up table high-byte addr
CLRF TBLPTRU ;clear upper 5 bits
B8 TBLRD* + ;read the table,then increment TBLPTR
MOVFEF TABLAT,W ;copy to WREG (Z = 1 if null)
BZ EXIT ;exit if end of string
MOVWE PORTB ;copy WREG to PORTB
BRA B8
EXIT GOTO EXIT
e message
ORG 0x500 ;data burned starting at 0x500
ORG 0x500
MESSAGE DB "The earth is but one country and "
DB "mankind its citizens","Baha'u'llah",O0
END

In the program above, the TBLPTR holds the address of the desired byte.
After the execution of the TBLRD*+ instruction, register TABLAT has the char-

acter. Notice that TBLPTR is incremented automatically to point to the next char-
acter in the MRESSAGE table.

TBLWT Table Write
Function: Write to Flash a block of data
Syntax: TBLWT*
TBLWT*+
TBLWT*-
TBLWT+*

This instruction writes a block of data to the program (code) space assum-
ing that the on-chip program ROM is of Flash type. The address of the desired
location in Flash ROM is held by the TBLPTR register. The process of writing to
Flash ROM using the TBLWT instruction is discussed in Section 14.3 of Chapter

14.

TSTFSZ Test fileReg, SKkip if Zero
Function: Test fileReg for zero value and skip if it is zero
Syntax: TSTFSZ f, a

This instruction tests the entire contents of fileReg for value zero and skips
the next instruction if fileReg has zero in it.

Example: Test PORTB for zero continuously.
SETEF TRISB ;make PORTB an input

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

CLREF TRISD
BACK TSTEFSZ PORTB

BRA BACK

MOVEF

PORTB, PORTD

Example: Toggle PORTB 250 times.

COUNTER SET
SETE TRISB
MOVLW D'250" ;
MOVWE COUNTER ;
MOVLW 0x55 ;
MOVWE PORTB

0x40

WREG = 250
COUNTER = 250
WREG = 55H

;make PORTD an output

;loc 40H for COUNTER
; PORTB as output

BACK COMF PORTB, F ;toggle PORTB
DECF COUNTER, F ;decrement COUNTER
TSTFSZ COUNTER ;test counter for 0
BRA BACK ; keep doing it
XORLW Ex-Or Literal with WREG
Function: Logical exclusive-OR Literal k and WREG
Syntax: XORLW k

A B| AXORB
This performs a logical exclusive-OR on the |0 0 0
Literal value and WREG operands, bit by bit, storing | o 1 1
the result in WREG. 1 0 1
1 1 0
Example:
MOVLW 0x39 ;WREG = 39H
XORLW 0x09 ;WREG = 39H ORed with 09
;now, WREG = 30H
39H 0011 1001
09H 0000 1001
30 0011 0000
Example:
MOVLW 0x32 ;WREG = 32H
XORLW 0x50 ; (now, WREG =
32H 0011 0010
50H 0101 0000
62H 0110 0010
XORWF Ex-Or WREG with fileReg
Function: Logical exclusive-OR fileReg and WREG
Syntax: XORWF f,d,a

This performs a logical exclusive-OR on the operands, bit by bit, storing
the result in the destination. The destination can be WREG (d = 0), or fileReg

(d=1).

Example:
MyReg SET 0x20 ;set aside loc 20h for MyReg
MOVLW 0x39 ;WREG = 39H
MOVWF MyReg ;MyReg = 39H
MOVLW 0x09 ;WREG = 09H
XORWE MyReg,F ;MyReg = 39H ORed with 09

;MyReg = 30H

39H 0011 1001
09H 0000 1001
30 0011 0000

Example:
MyReg SET 0x15 ;set aside loc 15 for MyReg
MOVLW 0x32 ;WREG = 32H
MOVWE MyReg ;MyReg = 32H
MOVLW 0x50 ;WREG = 50H
XORWE MyReg,F ;now W = 62H
32H 0011 0010
50H 0101 0000
62H 0110 0010.
We can place the result in WREG.

Example:
MyReg SET 0x15 ;set aside loc 15 for MyReg
MOVLW O0x44 ;WREG = 44H
MOVWE MyReg ;MyReg = 44H
MOVLW 0x67 ;WREG = 67H
XORWFEF MyReg ;now W = 23H, and MyReg = 44H
44H 0100 0100
67H 0110 0111
23H 0010 0011

APPENDIX A: PIC18 INSTRUCTIONS: FORMAT AND DESCRIPTION

A-48

APPENDIX B

BASICS OF
WIRE WRAPPING

OVERVIEW

This appendix shows the basics of wire wrapping.

BASICS OF WIRE WRAPPING

Note: For this tutorial appendix, you will need the following:
Wire-wrapping tool (Radio Shack part number 276-1570)

30-gauge (30-AWG) wire for wire wrapping

(Thanks to Shannon Looper and Greg Boyle for their assistance on this section.)

The following describes the basics of wire wrapping:

1. There are several different types of wire-wrap tools available. The best one is
available from Radio Shack for less than $10. The part number for the Radio
Shack model is 276-1570. This tool combines the wrap and unwrap functions
in the same end of the tool and includes a separate stripper. We found this to
be much easier to use than the tools that combined all these features on one
two-ended shaft. There are also wire-wrap guns, which are, of course, more
expensive.

2. Wire-wrapping wire is available prestripped in various lengths or in bulk on a
spool. The prestripped wire is usually more expensive and you are restricted to
the different wire lengths you can afford to buy. Bulk wire can be cut to any
length you wish, which allows each wire to be custom fit.

3. Serveral different types of wire-wrap boards are available. These are usually
called perfboards or wire-wrap boards. These types of boards are sold at many
electronics stores (such as Radio Shack). The best type of board has plating
around the holes on the bottom of the board. These boards are better because
the sockets and pins can be soldered to the board, which makes the circuit more
mechanically stable.

4. Choose a board that is large enough to accommodate all the parts in your
design with room to spare so that the wiring does not become too cluttered. If
you wish to expand your project in the future, you should be sure to include
enough room on the original board for the complete circuit. Also, if possible,
the layout of the IC on the board needs to be such that signals go from left to
right just like the schematics.

5. To make the wiring easier and to keep pressure off the pins, install one stand-
off on each corner of the board. You may also wish to put standoffs on the top
of the board to add stability when the board is on its back.

6. For power hook-up, use some type of standard binding post. Solder a few sin-
gle wire-wrap pins to each power post to make circuit connections (to at least
one pin for each IC in the circuit).

7. To further reduce problems with power, each IC must have its own connection
to the main power of the board. If your perfboard does not have built-in power
buses, run a separate power and ground wire from each IC to the main power.
In other words, DO NOT daisy chain (chip-to-chip connection is called daisy
chain) power connections, as each connection down the line will have more
wire and more resistance to get power through. See Figure B-1. However,
daisy chaining is acceptable for other connections such as data, address, and
control buses.

8. You must use wire-wrap sockets. These sockets have long square pins whose
edges will cut into the wire as it is wrapped around the pin.

A-50

9. Wire wrapping will not work on round legs. If you need to wrap to compo-
nents, such as capacitors, that have round legs, you must also solder these con-
nections. The best way to connect single components is to install individual
wire-wrap pins into the board and then solder the components to the pins. An
alternate method is to use an empty IC socket to hold small components such
as resistors and wrap them to the socket.

10. The wire should be stripped about 1 inch. This will allow 7 to 10 turns for each
connection. The first turn or turn-and-a-half should be insulated. This prevents
stripped wire from coming in contact with other pins. This can be accom-
plished by inserting the wire as far as it will go into the tool before making the
connection.

11. Try to keep wire lengths to a minimum. This prevents the circuit from looking
like a bird nest. Be neat and use color coding as much as possible. Use only
red wires for V- and black wires for ground connections. Also use different

colors for data, address, and control signal connections. These suggestions will
make troubleshooting much easier.

12. It is standard practice to connect all power lines first and check them for con-
tinuity. This will eliminate trouble later on.

13. It's also a good idea to mark the pin orientation on the bottom of the board.
Plastic templates are available with pin numbers preprinted on them specifical-
ly for this purpose, or you can make your own from paper. Forgetting to
reverse pin order when looking at the bottom of the board is a very common
mistake when wire wrapping circuits.

14. To prevent damage to your circuit, place a diode (such as IN5338) in reverse
bias across the power supply. If the power gets hooked up backwards, the
diode will be forward biased and will act as a short, keeping the reversed volt-
age from your circuit.

15. In digital circuits, there can be a problem with current demand on the power
supply. To filter the noise on the power supply, a 100 uF electrolytic capacitor
and a 0.1 pF monolithic capacitor are connected from V(- to ground, in par-

allel with each other, at the entry point of the power supply to the board. These
two together will filter both the high- and the low-frequency noises. Instead of
using two capacitors in parallel, you can use a single 20-100 pF tantalum
capacitor. Remember that the long lead is the positive one.

16. To filter the transient current, use a 0.1 uF monolithic capacitor for each IC.
Place the 0.1 puF monolithic capacitor between V¢ and ground of each IC.

Make sure the leads are as short as possible.

IC #1 IC #2 IC#3 IC #4

Figure B-1. Daisy Chain Connection (not recommended for power lines)

APPENDIX B: BASICS OF WIRE WRAPPING

A-52

APPENDIX C

IC TECHNOLOGY AND
SYSTEM DESIGN ISSUES

OVERVIEW

This appendix provides an overview of IC technology and PIC18
interfacing. In addition, we look at the microcontroller-based system as a
whole and examine some general issues in system design.

First, in Section C.1, we provide an overview of IC technology.
Then, in Section C.2, the internal details of PIC18 1/O ports and interfac-
ing are discussed. Section C.3 examines system design issues.

C.1: OVERVIEW OF IC TECHNOLOGY

In this section we examine IC technology and discuss some major devel-
opments in advanced logic families. Because this is an overview, it is assumed that
the reader is familiar with logic families on the level presented in basic digital
electronics books.

Transistors

The transistor was invented in 1947 by three scientists at Bell Laboratory.
In the 1950s, transistors replaced vacuum tubes in many electronics systems,
including computers. It was not until 1959 that the first integrated circuit was suc-
cessfully fabricated and tested by Jack Kilby of Texas Instruments. Prior to the
invention of the IC, the use of transistors, along with other discrete components
such as capacitors and resistors, was common in computer design. Early transis-
tors were made of germanium, which was later abandoned in favor of silicon. This
was because the slightest rise in temperature resulted in massive current flows in
germanium-based transistors. In semiconductor terms, it is because the band gap
of germanium is much smaller than that of silicon, resulting in a massive flow of
electrons from the valence band to the conduction band when the temperature rises
even slightly. By the late 1960s and early 1970s, the use of the silicon-based IC
was widespread in mainframes and minicomputers. Transistors and ICs at first
were based on P-type materials. Later on, because the speed of electrons is much
higher (about two-and-a-half times) than the speed of holes, N-type devices
replaced P-type devices. By the mid-1970s, NPN and NMOS transistors had
replaced the slower PNP and PMOS transistors in every sector of the electronics
industry, including in the design of microprocessors and computers. Since the
early 1980s, CMOS (complementary MOS) has become the dominant technology
of IC design. Next we provide an overview of differences between MOS and bipo-
lar transistors. See Figure C-1.

Oxide
c \‘ o

cN lJ
B|P B X 2

G—{| Pl G |
E|N E

S N] S
Bipolar NPN Transistor NMOS Transistor

Figure C-1. Bipolar vs. MOS Transistors

A-54

MOS vs. bipolar transistors

There are two types of transistors: bipolar and MOS (metal-oxide semicon-
ductor). Both have three leads. In bipolar transistors, the three leads are referred to
as the emitter, base, and collector, while in MOS transistors they are named
source, gate, and drain. In bipolar transistors, the carrier flows from the emitter to
the collector, and the base is used as a flow controller. In MOS transistors, the car-
rier flows from the source to the drain, and the gate is used as a flow controller. In
NPN-type bipolar transistors, the electron carrier leaving the emitter must over-
come two voltage barriers before it reaches the collector (see Figure C-1). One is
the N-P junction of the emitter-base and the other is the P-N junction of the base-
collector. The voltage barrier of the base-collector is the most difficult one for the
electrons to overcome (because it is reverse-biased) and it causes the most power
dissipation. This led to the design of the unipolar type transistor called MOS. In
N-channel MOS transistors, the electrons leave the source and reach the drain
without going through any voltage barrier. The absence of any voltage barrier in
the path of the carrier is one reason why MOS dissipates much less power than
bipolar transistors. The low power dissipation of MOS allows millions of transis-
tors to fit on a single IC chip. In today's technology, putting 10 million transistors
into an IC is common, and it is all because of MOS technology. Without the MOS
transistor, the advent of desktop personal computers would not have been possi-
ble, at least not so soon. The bipolar transistors in both the mainframes and mini-
computers of the 1960s and 1970s were bulky and required expensive cooling sys-
tems and large rooms. MOS transistors do have one major drawback: They are
slower than bipolar transistors. This is due partly to the gate capacitance of the
MOS transistor. For a MOS to be turned on, the input capacitor of the gate takes
time to charge up to the turn-on (threshold) voltage, leading to a longer propaga-
tion delay.

Overview of logic families

Logic families are judged according to (1) speed, (2) power dissipation, (3)
noise immunity, (4) input/output interface compatibility, and (5) cost. Desirable
qualities are high speed, low power dissipation, and high noise immunity (because
it prevents the occurrence of false logic signals during switching transition). In
interfacing logic families, the more inputs that can be driven by a single output,
the better. This means that high-driving-capability outputs are desired. This, plus
the fact that the input and output voltage levels of MOS and bipolar transistors are
not compatible mean that one must be concerned with the ability of one logic fam-
ily to drive the other one. In terms of the cost of a given logic family, it is high dur-
ing the early years of its introduction but it declines as production and use rise.

The case of inverters

As an example of logic gates, we look at a simple inverter. In a one-tran-
sistor inverter, the transistor plays the role of a switch, and R is the pull-up resis-
tor. See Figure C-2. For this inverter to work most effectively in digital circuits,
however, the R value must be high when the transistor is “on” to limit the current
flow from V(to ground in order to have low power dissipation (P = VI, where V

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

= 5 V). In other words, the lower the I, the lower the power dissipation. On the
other hand, when the transistor is “off”’, R must be a small value to limit the volt-
age drop across R, thereby making sure that Vqr is close to V. This is a con-
tradictory demand on R. This is one reason that logic gate designers use active
components (transistors) instead of passive components (resistors) to implement
the pull-up resistor R.

Vce Vce Vce
Rc Rc Rc
Out Low High
In High Low
Rc must be a Rc must be a
very high value. very low value.

Figure C-2. One-Transistor Inverter with Pull-up Resistor

The case of a TTL inverter with totem-pole output is shown in Figure C-3.
In Figure C-3, Q3 plays the role of a pull-up resistor.

Vce Vce
é Ve é
Low A} Q1

High &
Input Q

On
Input
High P Low

Out Out
On

Figure C-3. TTL Inverter with Totem-Pole Output
CMOS inverter

In the case of CMOS-based logic gates, PMOS and NMOS are used to con-
struct a CMOS (complementary MOS) inverter as shown in Figure C-4. In CMOS
inverters, when the PMOS transistor is off, it provides a very high impedance path,
making leakage current almost zero (about 10 nA); when the PMOS is on, it pro-
vides a low resistance on the path of Vpp to load. Because the speed of the hole is

slower than that of the electron, the PMOS transistor is wider to compensate for
this disparity; therefore, PMOS transistors take more space than NMOS transistors
in the CMOS gates. At the end of this section we will see an open-collector gate
in which the pull-up resistor is provided externally, thereby allowing system
designers to choose the value of the pull-up resistor.

A-56

VDD VDD
o] o]
[T o
(- | —

| PMOS —| PMOS
Input ¢ Input ——
nput =+ oy Output 0V 5y Output
— —
| < NMOS <, NMOS
“on” |] “Oﬁ:” | —
o [
Vss Vss

Figure C-4. CMOS Inverter
Input/output characteristics of some logic families

In 1968 the first logic family made of bipolar transistors was marketed. It
was commonly referred to as the standard TTL (transistor-transistor logic) family.
The first MOS-based logic family, the CD4000/74C series, was marketed in 1970.
The addition of the Schottky diode to the base-collector of bipolar transistors in
the early 1970s gave rise to the S family. The Schottky diode shortens the propa-
gation delay of the TTL family by preventing the collector from going into what
is called deep saturation. Table C-1 lists major characteristics of some logic fami-
lies. In Table C-1, note that as the CMOS circuit's operating frequency rises, the
power dissipation also increases. This is not the case for bipolar-based TTL.

Table C-1: Characteristics of Some Logic Families

Characteristic STD TTL LSTTL ALSTTL HCMOS
Vee 5V 5V 5V 5V

Vig 20V 20V 20V 3.15V
Vi 0.8V 0.8V 0.8V 1.1V
Vou 24V 27V 27V 37V
VoL 04V 0.5V 04V 04V

I -1.6 mA -036 mA -0.2mA -1 pA
Ly 40 nA 20 uA 20 pA 1 nA

IoL 16 mA 8 mA 4 mA 4 mA
Ton 400 uA -400uA -400 A 4 mA
Propagation delay 10 ns 9.5 ns 4 ns 9 ns
Static power dissipation (f=0) 10 mW 2 mW 1 mW 0.0025 nW
Dynamic power dissipation

at f=100 kHz 10 mW 2 mW 1 mW 0.17 mW

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

History of logic families

Early logic families and microprocessors required both positive and nega-
tive power voltages. In the mid-1970s, 5 V V- became standard. In the late

1970s, advances in IC technology allowed combining the speed and drive of the S
family with the lower power of LS to form a new logic family called FAST
(Fairchild Advanced Schottky TTL). In 1985, AC/ACT (Advanced CMOS
Technology), a much higher speed version of HCMOS, was introduced. With the
introduction of FCT (Fast CMOS Technology) in 1986, the speed gap between
CMOS and TTL at last was closed. Because FCT is the CMOS version of FAST,
it has the low power consumption of CMOS but the speed is comparable with
TTL. Table C-2 provides an overview of logic families up to FCT.

Table C-2: Logic Family Overview

Year Static Supply High/Low Family
Product Introduced Speed (ns) Current (mA) Drive (mA)
Std TTL 1968 40 30 -2/32
CD4K/74C 1970 70 0.3 -0.48/6.4
LS/S 1971 18 54 -15/24
HC/HCT 1977 25 0.08 —6/-6
FAST 1978 6.5 90 -15/64
AS 1980 6.2 90 -15/64
ALS 1980 10 27 -15/64
AC/ACT 1985 10 0.08 -24/24
FCT 1986 6.5 1.5 -15/64

Reprinted by permission of Electronic Design Magazine, c. 1991.

Recent advances in logic families

As the speed of high-performance microprocessors reached 25 MHz, it
shortened the CPU's cycle time, leaving less time for the path delay. Designers
normally allocate no more than 25% of a CPU's cycle time budget to path delay.
Following this rule means that there must be a corresponding decline in the prop-
agation delay of logic families used in the address and data path as the system fre-
quency 1is increased. In recent years, many semiconductor manufacturers have
responded to this need by providing logic families that have high speed, low noise,
and high drive I/O. Table C-3 provides the characteristics of high-performance
logic families introduced in recent years. ACQ/ACTQ are the second-generation
advanced CMOS (ACMOS) with much lower noise. While ACQ has the CMOS
input level, ACTQ is equipped with TTL-level input. The FCTx and FCTx-T are
second-generation FCT with much higher speed. The “x” in the FCTx and FCTx-
T refers to various speed grades, such as A, B, and C, where A means low speed
and C means high speed. For designers who are well versed in using the FAST
logic family, FASTr is an ideal choice because it is faster than FAST, has higher
driving capability (I5;, o), and produces much lower noise than FAST. At the

time of this writing, next to ECL and gallium arsenide logic gates, FASTr is the
fastest logic family in the market (with the 5 V V), but the power consumption

is high relative to other logic families, as shown in Table C-3. The combining of

A-58

high-speed bipolar TTL and the low power consumption of CMOS has given birth
to what is called BICMOS. Although BICMOS seems to be the future trend in IC
design, at this time it is expensive due to extra steps required in BICMOS IC fab-
rication, but in some cases there is no other choice. (For example, Intel's Pentium
microprocessor, a BICMOS product, had to use high-speed bipolar transistors to
speed up some of the internal functions.) Table C-3 provides advanced logic char-
acteristics. The “x” is for different speeds designated as A, B, and C. A is the slow-
est one while C is the fastest one. The above data is for the 74244 buffer.

Table C-3: Advanced Logic General Characteristics

Number Tech Static

Family Year Suppliers Base I/0 Level Speed (ns) Current Igy/IgL

ACQ 1989 2 CMOS CMOS/CMOS 6.0 80 A -24/24 mA
ACTQ 1989 2 CMOS TTL/CMOS 7.5 80 A -24/24 mA
FCTx 1987 3 CMOS TTL/CMOS 4148 1.5mA -15/64 mA
FCTxT 1990 2 CMOS TTL/TTL 4148 1.5mA -15/64 mA
FASTr 1990 1 Bipolar TTL/TTL 3.9 50 mA -15/64 mA
BCT 1987 2 BICMOS TTL/TTL 5.5 10 mA -15/64 mA

Reprinted by permission of Electronic Design Magazine, c. 1991.

Since the late 70s, the use of a +5 V power supply has become standard in
all microprocessors and microcontrollers. To reduce power consumption, 3.3 V
Vc 1s being embraced by many designers. The lowering of V¢ to 3.3 V has two

major advantages: (1) it lowers the
power consumption, prolonging
the life of the battery in systems
using a battery, and (2) it allows a
further reduction of line size
(design rule) to submicron dimen-
sions. This reduction results in put-
ting more transistors in a given die
size. As fabrication processes
improve, the decline in the line size
is reaching submicron level and
transistor densities are approaching
1 billion transistors.

Input

Ve

= =

Vce

External

pull-up
resistor

-

v

Output

Figure C-5.

Open-collector and open-drain

gates

To allow multiple outputs to be connect-
ed together, we use open-collector logic gates.
In such cases, an external resistor will serve as
load. This is shown in Figures C-5 and C-6.

Open Collector

9

External

pull-up
resistor

Figure C-6. Open Drain

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

SECTION C.2: PIC18 I/O PORT STRUCTURE AND INTERFACING

In interfacing the PIC18 microcontroller with other IC chips or devices,
fan-out is the most important issue. To understand the PIC18 fan-out we must first
understand the port structure of the PIC18. This section provides a detailed discus-
sion of the PIC18 port structure and its fan-out. It is very critical that we under-
stand the I/O port structure of the PIC18 lest we damage it while trying to inter-
face it with an external device.

IC fan-out

When connecting IC chips together, we need to find out how many input
pins can be driven by a single output pin. This is a very important issue and
involves the discussion of what is called IC fan-out. The IC fan-out must be
addressed for both logic “0” and logic “1” outputs. See Example C-1. Fan-out for
logic LOW and fan-out for logic HIGH are defined as follows:

Ior lon

fan-out (of LOW) = — fan-out (of HIGH) =
I

7

Of the above two values, the lower number is used to ensure the proper
noise margin. Figure C-7 shows the sinking and sourcing of current when ICs are
connected together.

HIGH A) A) A) LOW * * *

“Off” 2 r]_‘

Nl

e

flfx MNoA A A

e

“On,, - “Oﬁ_-n
loL = Z Iy lon =Z liy

$ IOL VOL = RON (transistor) X IOL

Figure C-7. Current Sinking and Sourcing in TTL

Notice that in Figure C-7, as the number of input pins connected to a sin-
gle output increases, Iy rises, which causes Vg to rise. If this continues, the rise

of Vo makes the noise margin smaller, and this results in the occurrence of false
logic due to the slightest noise.

A-60

Example C-1

Find how many unit loads (UL) can be driven by the output of the LS logic family.
Solution:

The unit load is defined as I} = 1.6 mA and I;;; = 40 pA. Table C-1 shows Iy = 400
nA and I, = 8 mA for the LS family. Therefore, we have

IOL 8 mA
fan-out (LOW) = 7 = 16mA 5
IL 0
log 400 pA _ 10
fan-out (HIGH) = -—_ ——
Iy 40 uA

This means that the fan-out is 5. In other words, the LS output must not be connected
to more than 5 inputs with unit load characteristics.

74LS244 and 74L.S245 buffers/drivers

In cases where the receiver current requirements exceed the driver’s capa-
bility, we must use buffers/drivers such as the 74L.S245 and 74L.S244. Figure C-8
shows the internal gates for the 741L.S244 and 741.S245. The 74L.S245 is used for
bidirectional data buses, and the 741.S244 is used for unidirectional address buses.

o] 0]
| A1 Vce GND B
0] - N —
— |7'd A
Vce 1G —{ A2 |_ B2
1A-1 N 1Y-1 —| A3 B3 [—
1A-2 . I e B
'\|(—| A5 B5 |—
1A-3 I\ 1Y-3 —|as B6 |—
1A-4 '\L 1Y-4 —| A7 B7 |—
: 0 Qe
- 2Y-1
2A-1 . DIR G
2A-2 l\; 2Y-2 Direction Enable
control
2A-3 | 2Y-3 .
% Function Table
2A-4 N 2Y-4 __[Direction control
L‘ Enable G DIR Operation
_ L L B Data to A Bus
GND 1G L H A Data to B Bus
| H X Isolation

Figure C-8 (a). 74L.S244 Octal Buffer Figure C-8 (b). 74L.S245 Bidirectional Buffer

(Reprinted by permission of Texas Instruments, Copyright (Reprinted by permission of Texas Instruments, Copyright
Texas Instruments, 1988) Texas Instruments, 1988)

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

Tri-state buffer

Notice that the

74LS244 is simply 8 tri- In Out L L
state buffers in a single |(@) . (b)
chip. As shown in Figure Igrﬁ:glte H
C-9 a tri-state buffer has a

Ei Low

(active high)
single input, a single out-
put, and the enable control
input. By activating the

enable, data at the input is H H

(c) (d)
transferred to the output. H
The enable can be an

active-LOW or an active- High-impedence
HIGH. Notice that the (open-circuit)
enable input for the
74L.S244 is an active-LOW Figure C-9. Tri-State Buffer
whereas the enable input

pin for Figure C-9 is active-HIGH.

74L.S245 and 74LS244 fan-out

It must be noted that the output of the 74L.S245 and 74L.S244 can sink and
source a much larger amount of current than that of other LS gates. See Table
C-4. That is the reason we use these buffers for driver when a signal is travelling
a long distance through a cable or it has to drive many inputs.

Table C-4: Electrical Specifications for Buffers/Drivers

Iog (mA) I, (mA)
7418244 3 12
7418245 3 12

After this background on the fan-out, next we discuss the structure of
PIC18 ports.

PIC18 port structure and operation

Because all the ports of the PIC18 are bidirectional they all have the fol-
lowing four components in their structure:

1. Data latch

2. Output driver
3. Input buffer
4. TRIS latch

Figure C-10 shows the structure of a port and its four components. Notice
that in Figure C-10, the PIC18 ports have both the latch and buffer. Now the ques-
tion is, in reading the port, are we reading the status of the input pin or are we read-

A-62

E RD LAT
-— ~
DATA BUS 1 X
1 D Q Voo
e |
WR PORT Lok alX X 1 L e
DATA LATCH 1 Z] ONE
1 1 X 0
N |
WR TRIS Lotk alo
V.
TRIS=1 TRIS LATCH ss TTL or
\/ schmirT
RD TRIS 1] TRIGGER
1 A U8 romy L
-— \l\‘q— -—
En 4
RD PORT L N |
L~°

Figure C-10. Inputting (Reading) 1 from a Pin in the PIC18

ing the status of the latch? That is an extremely important question and its answer
depends on which instruction we are using. Therefore, when reading the ports
there are two possibilities: (1) reading the input pin, or (2) reading the latch. The
above distinction is very important and must be understood lest you damage the
PIC18 port. Each is described next.

Reading the pin when TRIS = 1 (Input)

As we stated in Chapter 4, to make any bits of any port of the PIC18 an
input port, we first must write a 1 (logic HIGH) to the TRIS bit. Look at the fol-
lowing sequence of events to see why:

1. As can be seen from Figure C-10, a 1 written to the TRIS latch has “HIGH”
on its Q. Therefore, Q = 1 and Q = 0. Because Q = 1, it turns off the P transis-
tor.

2. Because Q = 0 and is connected to the gate of the N transistor, the N transistor
is off.

3. When both transistors are off, they block any path to the ground or VCC for
any signal connected to the input pin, and the input signal is directed to the
buffer.

4. When reading the input port in instructions such as “MOVFW PORTB” we are
really reading the data present at the pin. In other words, it is bringing into the
CPU the status of the external pin. This instruction activates the read pin of
buffer and lets data at the pins flow into the CPU’s internal bus. Figures C-10
and C-11 show HIGH and LOW signals at the input, respectively.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

E RD LAT
~

-—
DATA BUS 0 X
0 D Q Voo
e]
WR PORT Lok alX X 1 L e
DATA LATCH 1 Z 0 ZERO
L 1 X 0
N |
WR TRIS Lok qlo
TRIS=1 TRIS LATCH Vss
ERD TRIS 0
0 A1 0510
-— -— -—
En <—I
RD PORT >

Figure C-11. Inputting (Reading) 0 from a Pin in the PIC18
Writing to pin when TRIS = 0 (Output)

The above discussion showed why we must write a “HIGH” to a port’s
TRIS bits in order to make it an input port. What happens if we write a “0” to TRIS
that was configured as an input port? From Figure C-12 we see that when
TRIS = 0, if we write a 0 to the Data latch, then Q =0 and Q = 1. As a result of Q
=1, the N transistor is “on” and the P transistor is “oft.” If N is “on,” it provides
the path to ground for the input pin. Therefore, any attempt to read the input pin
will always get the “LOW” ground signal. Figure C-13 shows what happens when
we write “HIGH” to output port (Data latch) when TRIS = 0. Writing 1 to the Data
latch makes Q = 0. As a result of that, the P transistor is “on” and the N transistor
is “oft,” which allows a 1 to be provided to the output pin. Therefore, any attempt
to read the input pin will always get the “HIGH” signal.

Avoid damaging the port

The following methods can be used as precautions to prevent damage to
the PIC18 ports:

1. Have a 10k ohms resistor on the V¢ path to limit current flow.

2. Connect any input switch to a 74L.S244 tri-state buffer before it is fed to the
PIC18 pin.

The above points are extremely important and must be emphasized
because many people damage their ports and afterwards wonder how it happened.
We must also use the right instruction when we want to read the status of an input
pin. Table C-5 shows the list of instructions in which reading the port reads the sta-
tus of the input pin.

A-64

j RD LAT
B —— ~
DATA BUS 0 0
0 D Q Voo
—» — >
WR PORT ~% w1 1 1
D CLK Q D_I b OFF
DATA LATCH 0 ZERO
_>
0 0 1 1 (_
N |
WR TRIS Lok ald
\Y;
TRIS LATCH ss
TRIS=0 TTL or
]/:] §7 SCHMITT
RD TRIS TRIGGER
En 4
RD PORT \r {>c |

Figure C-12. Outputting (Writing) 0 to a Pin in the PIC18

f RD LAT

~
B
4 DATABUS 1 1
D Q Voo
— —
WR PORT ~ o 0 0
DATA LATCH 0 ONE
0 0 0 0
N |
WR TRIS Lok ol
TRIS=0 TRIS LATCH Vss TTLor
-]/:] SCHMITT
RD TRIS TRIGGER

RD PORT \r Dc - <_l

Figure C-13. Outputting (Writing) 1 to a Pin in the PIC18

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

Table C-5: Some of the Instructions Reading the Status of Input Port

Mnemonics Examples

MOVEFW PORTx MOVEW PORTB
TSTFSZ £ TSTESZ PORTC
BTEFSS f,b BTFSS PORTD, 0
BTEFSC £,b BTFSC PORTB, 7
CPFSEQ £ CPFSEQ PORTB

PIC18 port fan-out

Now that we are familiar with the port structure of the PIC18, we need to
examine the fan-out for the PIC18 microconctroller. While the early chips were
based on NMOS IC technology, today's PIC18 microcontrollers are all based on
CMOS technology. Note, however, that while the core of the PIC18 microcon-

troller is CMOS, the circuitry driv- Table C-6: PIC18 Fan-out for PORTS
ing its pins is all TTL compatible.

That is, the PIC18 is a CMOS-based Pin Fan-out
product with TTL-compatible pins. IOL 8.5 mA
All the ports of the PIC18 have the 1OH —3 mA
same I/O structure, and therefore the 1L 1A

same fan-out. Table C-6 provides the 1IH 1 pA

‘e Note: Negative current is defined as current
I/O characteristics of PIC18F458 sourced by the pin.
ports.

74L.S244 driving an output

pIn PIC18 74L.S244

In some cases, when an l'> DO Printer
PIC18 port is driving multiple inputs, PORTB N data
or driving a single input via a long L1~ D7 port
wire or cable (e.g., printer cable), we ?$?
can use the 74LS244 as a driver. RDO N STROBE
When driving an off-board circuit, lg -
placing the 74L.S244 buffer between RD1 ﬁ ACK
your PIC18 and the circuit is essen- s
. RD2 BUSY
tial because the PIC18 lacks suffi- y
cient current. See Figure C-14. 74LS244

Figure C-14. PIC18 Connection to
Printer Signals

A-66

SECTION C.3: SYSTEM DESIGN ISSUES

In addition to fan-out, the other issues related to system design are power
dissipation, ground bounce, V¢ bounce, crosstalk, and transmission lines. In this

section we provide an overview of these topics.
Power dissipation considerations

Power dissipation of a system is a major concern of system designers,
especially for laptop and hand-held systems in which batteries provide the power.
Power dissipation is a function of frequency and voltage as shown below:

o=CV
o o
T T
: _ 1 _ 90
since F T and 1 T
[=CVF

now P=VI=CV?F

In the above equations, the effects of frequency and V- voltage should be

noted. While the power dissipation goes up linearly with frequency, the impact of
the power supply voltage is much more pronounced (squared). See Example C-2.

Example C-2

Compare the power consumption of two microcontroller-based systems. One uses 5 V
and the other uses 3 V for V.

Solution:

Because P = VI, by substituting I = V/R we have P = V2/R. Assuming that R = 1, we
have P =52 =25 W and P = 32 = 9 W. This results in using 16 W less power, which
means power saving of 64%. (16/25 x 100) for systems using 3 V for power source.

Dynamic and static currents

Two major types of currents flow through an IC: dynamic and static. A
dynamic current is I = CVF. It is a function of the frequency under which the com-
ponent is working. This means that as the frequency goes up, the dynamic current
and power dissipation go up. The static current, also called DC, is the current con-
sumption of the component when it is inactive (not selected). The dynamic cur-
rent dissipation is much higher than the static current consumption. To reduce
power consumption, many microcontrollers, including the PIC18, have power-
saving modes. In the PIC18, the power saving mode is called sleep mode. We
describe the sleep mode next.

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

Sleep mode

In sleep mode the on-chip oscillator is frozen, which cuts off frequency to
the CPU and peripheral functions, such as serial ports, interrupts, and timers.
Notice that while this mode brings power consumption down to an absolute mini-
mum, the contents of RAM and the SFR registers are saved and remain
unchanged.

Ground bounce

One of the major issues that designers of high-frequency systems must
grapple with is ground bounce. Before we define ground bounce, we will discuss
lead inductance of IC pins. There is a certain amount of capacitance, resistance,
and inductance associated with each pin of the IC. The size of these elements
varies depending on many factors such as length, area, and so on.

The inductance of the pins is commonly referred to as self-inductance
because there is also what is called mutual inductance, as we will show below. Of
the three components of capacitor, resistor, and inductor, the property of self-
inductance is the one that causes the most problems in high-frequency system
design because it can result in ground bounce. Ground bounce occurs when a mas-
sive amount of current flows through the ground pin caused by many outputs
changing from HIGH to LOW all at the same time. See Figure C-15(a). The volt-
age 1s related to the inductance of the ground lead as follows:

_ o, di
V=1L 7

As we increase the system frequency, the rate of dynamic current, di/dt, is
also increased, resulting in an increase in the inductance voltage L (di/dt) of the
ground pin. Because the LOW state (ground) has a small noise margin, any extra
voltage due to the inductance can cause a false signal. To reduce the effect of
ground bounce, the following steps must be taken where possible:

1. The V¢ and ground pins of the chip must be located in the middle rather than
at opposite ends of the IC chip (the 14-pin TTL logic IC uses pins 14 and 7 for
ground and V¢). This is exactly what we see in high-performance logic gates
such as Texas Instruments' advanced logic AC11000 and ACT11000 families.
For example, the ACT11013 is a 14-pin DIP chip in which pin numbers 4 and
11 are used for the ground and V-, instead of 7 and 14 as in the traditional
TTL family. We can also use the SOIC packages instead of DIP.

2. Another solution is to use as many pins for ground and V¢ as possible to
reduce the lead length. This is exactly why all high-performance microproces-
sors and logic families use many pins for V¢ and ground instead of the tradi-
tional single pin for V- and single pin for GND. For example, in the case of
Intel's Pentium processor there are over 50 pins for ground, and another 50
pins for Vic.

A-68

DO
1 Vout
D1 1
D2
1 Time
> 1
lect lech
Ground ‘/\,\\
Ground bounce occurs when data Transient current going from 0 to 1
switches from all 1s to all Os
Figure C-15. (a) Ground Bounce (b) Transient Current

The above discussion of ground bounce is also applicable to V- when a

large number of outputs changes from the LOW to the HIGH state; this is referred
to as Vi bounce. However, the effect of V¢ bounce is not as severe as ground

bounce because the HIGH (“1”) state has a wider noise margin than the LOW
(“0”) state.

Filtering the transient currents using decoupling capacitors

In the TTL family, the change of the output from LOW to HIGH can cause
what is called transient current. In a totem-pole output in which the output is
LOW, Q4 is on and saturated, whereas Q3 is off. By changing the output from the
LOW to the HIGH state, Q3 turns on and Q4 turns off. This means that there is a
time when both transistors are on and drawing current from Vc. The amount of

current depends on the Ry values of the two transistors, which in turn depend on

the internal parameters of the transistors. The net effect of this, however, is a large
amount of current in the form of a spike for the output current, as shown in Figure
C-15(b). To filter the transient current, a 0.01 uF or 0.1 uF ceramic disk capacitor
can be placed between the V- and ground for each TTL IC. The lead for this

capacitor, however, should be as small as possible because a long lead results in a
large self-inductance, and that results in a spike on the Vi line [V = L (di/dt)].

This spike is called V¢ bounce. The ceramic capacitor for each IC is referred to

as a decoupling capacitor. There is also a bulk decoupling capacitor, as described
next.

Bulk decoupling capacitor

If many IC chips change state at the same time, the combined currents
drawn from the board's V- power supply can be massive and may cause a fluc-
tuation of V¢ on the board where all the ICs are mounted. To eliminate this, a rel-
atively large decoupling tantalum capacitor is placed between the V¢ and ground

lines. The size and location of this tantalum capacitor varies depending on the
number of ICs on the board and the amount of current drawn by each IC, but it is

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

common to have a single 22 uF to 47 uF capacitor for each of the 16 devices,
placed between the V¢ and ground lines.

Crosstalk

Crosstalk is due to mutual inductance.

See Figure C-16. Previously, we discussed self- D W

inductance, which is inherent in a piece of con-
ductor. Mutual inductance is caused by two —D>—w——
electric lines running parallel to each other. The Lo
mutual inductance is a function of 1, the length
of two conductors running in parallel, d, the Fjgure C-16. Crosstalk (EMI)
distance between them, and the medium mate-

rial placed between them. The effect of crosstalk can be reduced by increasing the
distance between the parallel or adjacent lines (in printed circuit boards, they will
be traces). In many cases, such as printer and disk drive cables, there is a dedicat-
ed ground for each signal. Placing ground lines (traces) between signal lines
reduces the effect of crosstalk. This method is used even in some ACT logic fam-
ilies where a V¢ and a GND pin are next to each other. Crosstalk is also called

EMI (electromagnetic interference). This is in contrast to ES/ (electrostatic inter-
ference), which is caused by capacitive coupling between two adjacent conduc-
tors.

Transmission line ringing _,_/\/\/\-

The square wave used in digital circuits is in
reality made of a single fundamental pulse and
many harmonics of various amplitudes. When this
signal travels on the line, not all the harmonics | pyffer
respond in the same way to the capacitance, induc- =||
tance, and resistance of the line. This causes what is _[>_'W"_ -
called ringing, which depends on the thickness and | Series termination
the length of the line driver, among other factors. To

Ringing

reduce the effect of ringing, the line drivers are ter-

minated by putting a resistor at the end of the line. %

See Figure C-17. There are three major methods of l'> iﬁl
line driver termination: parallel, serial, and %
Thevenin.

In serial termination, resistors of 30-50 | Parallel termination
ohms are used to terminate the line. The parallel and
Thevenin methods are used in cases where there is
a need to match the impedance of the line with the
load impedance. This requires a detailed analysis of the signal traces and load
impedance, which is beyond the scope of this book. In high-frequency systems,
wire traces on the printed circuit board (PCB) behave like transmission lines, caus-
ing ringing. The severity of this ringing depends on the speed and the logic fami-
ly used. Table C-7 provides the length of the traces, beyond which the traces must
be looked at as transmission lines.

Figure C-17. Reducing
Transmission Line Ringing

A-70

Table C-7: Line Length Beyond Which
Traces Behave Like Transmission Lines

Logic Family Line Length (in.)
LS 25

S, AS 11

F, ACT 8

AS, ECL 6

FCT, FCTA 5

(Reprinted by permission of Integrated Device Technology,
copyright IDT 1991)

APPENDIX C: IC TECHNOLOGY AND SYSTEM DESIGN ISSUES

A-T72

APPENDIX D

FLOWCHARTS AND
PSEUDOCODE

OVERVIEW

This appendix provides an introduction to writing flowcharts and
pseudocode.

Flowcharts

If you have taken any previous
programming courses, you are probably
familiar with flowcharting. Flowcharts
use graphic symbols to represent differ-
ent types of program operations. These
symbols are connected together into a
flowchart to show the flow of execution
of a program. Figure D-1 shows some of
the more commonly used symbols.
Flowchart templates are available to help
you draw the symbols quickly and neatly.

Pseudocode

Flowcharting has been standard
practice in industry for decades.
However, some find limitations in using
flowcharts, such as the fact that you can't
write much in the little boxes, and it is
hard to get the “big picture” of what the
program does without getting bogged
down in the details. An alternative to
using flowcharts is pseudocode, which
involves writing brief descriptions of the
flow of the code. Figures D-2 through
D-6 show flowcharts and pseudocode for
commonly used control structures.

Structured programming uses

Terminal

Process

Subroutine

Input/
Output

Connector

O

Figure D-1. Commonly Used
Flowchart Symbols

Statement 1
Statement 2

!

Statement 1

'

Statement 2

Figure D-2. SEQUENCE Pseudocode versus Flowchart

A-74

three basic types of program control structures: sequence, control, and iteration.
Sequence is simply executing instructions one after another. Figure D-2 shows
how sequence can be represented in pseudocode and flowcharts.

Figures D-3 and D-4 show two control programming structures: IF-THEN-
ELSE and IF-THEN in both pseudocode and flowcharts.

Note in Figures D-2 through D-6 that “statement” can indicate one state-
ment or a group of statements.

Figures D-5 and D-6 show two iteration control structures: REPEAT
UNTIL and WHILE DO. Both structures execute a statement or group of state-
ments repeatedly. The difference between them is that the REPEAT UNTIL struc-
ture always executes the statement(s) at least once, and checks the condition after
each iteration, whereas the WHILE DO may not execute the statement(s) at all
because the condition is checked at the beginning of each iteration.

Condition
2
IF (condition) THEN '
Statement 1
ELSE Y
2
Statement Statement 1 Statement 2

,%34

Figure D-3. IF THEN ELSE Pseudocode versus Flowchart

No
Condition
?
IF (condition) THEN tYes
Statement
Statement

o—

Figure D-4. IF THEN Pseudocode versus Flowchart

APPENDIX D: FLOWCHARTS AND PSEUDOCODE

l

»| Statement

REPEAT
Statement
UNTIL (condition)

No

Condition

Figure D-5. REPEAT UNTIL Pseudocode versus Flowchart

—

Statement

I

-

WHILE (condition) DO
Statement

Figure D-6. WHILE DO Pseudocode versus Flowchart

Program D-1 finds the sum of a series of bytes. Compare the flowchart ver-
sus the pseudocode for Program D-1 (shown in Figure D-7). In this example, more
program details are given than one usually finds. For example, this shows steps for
initializing and decrementing counters. Another programmer may not include
these steps in the flowchart or pseudocode. It is important to remember that the
purpose of flowcharts or pseudocode is to show the flow of the program and what
the program does, not the specific Assembly language instructions that accomplish
the program's objectives. Notice also that the pseudocode gives the same informa-
tion in a much more compact form than does the flowchart. It is important to note
that sometimes pseudocode is written in layers, so that the outer level or layer
shows the flow of the program and subsequent levels show more details of how
the program accomplishes its assigned tasks.

A-76

Count = 5
Address = 40H
Repeat

Add next byte
Increment address
Decrement counter

Until Count =

Store Sum

0

Start

Count=5
Address = 40H

»| Add one byte

Increment address
pointer

Decrement counter

No

Yes

Store sum

Figure D-7. Pseudocode versus Flowchart for Program D-1

COUNTVAL EQU 5 ; COUNT = 5
COUNTREG SET 0x20 ;set aside location 20H for counter
SUM SET 0x30 ;set aside location 30H for sum
MOVLW COUNTVAL JWREG = 5
MOVWE COUNTREG ;load the counter
LFSR 0,0x40 ;load pointer. FSRO = 40H, RAM address
CLRF WREG ;clear WREG
B5 ADDWEF POSTINCO, W ;add RAM to WREG and increment FSRO
DECF COUNTREG, F ;decrement counter
BNZ B5 ;loop until counter = zero
MOVWF SUM ;store WREG in SUM
Program D-1

APPENDIX D: FLOWCHARTS AND PSEUDOCODE

APPENDIX E.1

PIC18 PRIMER FOR
x86 PROGRAMMERS

x86 PIC18
8-bit registers: AL, AH, BL, BH, WREG and up to
CL, CH, DL, DH 256 RAM locations in Access Bank
16-bit (data pointer): BX, SI, DI TBLPTR
Program Counter: IP (16-bit) PC (21-bit)
Input:
MOV DX,port addr MOVEFW PORTx ; (x = A,B,..G)
IN AL, DX
Output:
MOV DX,port addr MOVWE PORTx ; (x = A,B,..G)
OoUT DX,AL
Loop:
DEC CL DECF MyReg, F
JNZ TARGET BNz TARGET
Stack pointer: SP (16-bit) SP (21-bit)
As we PUSH data onto the Push increments the SP.

stack, it decrements the SP. (Used exclusively for saving PC)

As we POP data from the stack, Pop decrements the SP.
it increments the SP. (Used exclusively for retrieving PC)
Data movement:
From the code segment:

MOV AL, CS:[SI] TBLRD
From the data segment:
MOV AL,[SI] MOVFW FSRx
From RAM:
MOV AL,[SI] MOVFW FSRx
(Use SI, DI, or BX only.)
To RAM: MOV [SI] ,AL MOVWE FSRx

A-78

APPENDIX E.2

PIC18 PRIMER FOR
8051 PROGRAMMERS

8051

PIC18

8-bit registers: A, B, RO, R1,R7

WREG and up to 256 RAM
locations in Access Bank

16-bit (data pointer): DPTR TBLPTR
Program Counter: PC (16-bit) PC (21-bit)
Input:

MOV A,Pn ; (n=0 - 3) MOVEW PORTx ; (x = A,B,..G)
Output:

MOV Pn,A ; (n=0 - 3) MOVWE PORTx ; (x = A,B,..G)
Loop:

DJINZ R3, TARGET DECF MyReqg, F

(Using RO-R7) BNz TARGET
Stack pointer: SP (8-bit) SP (21-bit)

As we PUSH data onto the
stack, it increments the SP.

As we POP data from the
stack, it decrements the SP.
Data movement:
From the code segment:
MOVC A, GA+PC
From the data segment:
MOVX A, @DPTR

From RAM:
MOV A, QRO
(Use RO or R1 only)
To RAM:
MOV @RO,A
(Use RO or R1 only)

Push increments the SP.
(Used exclusively for saving PC)

Pop decrements the SP.
(Used exclusively for retrieving PC)

TBLRD

MOVEW FEFSRx

MOVEW FEFSRx

MOVWE FEFSRx

APPENDIX E: PIC18 PRIMER FOR X86 AND 8051 PROGRAMMERS

APPENDIX F

ASCII CODES

Gh

Hex

68
61
62
63

64
65
66

67
68
67
6A

6B
6C
6D
6E
6F
78
71

72

73

74
75

76

7
78

7?

A

7B
0
7D
YE
7F

Dec

76

7
78

9
1688
181
182
183

184
185
186

187
188
182

118
111
112
113

114
115
116

117
118
119

128
121
122
123

124
125
126

127

Ch

Hex

48

41

42

43

44

45

46

47

48

42

4R

4B

4c

4D

4E

4F

58
51

52

53

54
55

56

57
58

5%

S5A

5B
5C
5D
5E
5F

Dec

64
65
66

67
68
67

7a
71

72

73

74
e

76

??
78

79

88
81
82
83

84
85
86

87
88
82

78
1
22
23

74
75

Ch

Hex

28
21
22
23

24
25
26

27
28
29
2A

2B
2C
2D
2E
2F
3@
31
32
33
34
35
36
37
38
37
3R
3B
3c
3D
3E
3F

Dec
32
33

34
35
36

3?
38
39

48
41

42

43

44
45

46

47
48

42

58
51
52
53

54
55
56

57
58
59

68
61
62
63

HUL

BEL
BS

HT

LF
ut

FF
GR
50
51

DC3

SYN

EM

SUB
ESC
FS§

GS

RS

us

Ch | Code

& [SOH
B ([STH
v (ETR
¢ (EOT
+ |ENQ
* [ACK

» |DLE
4 |DCL
1 (DC2

a1 |DC4
§ |MAK

1 |[ETB
T [CAN

>

Hex

aa
a1

a2

a3

a4
as

5]

a7z
a8

a2

5]

@B
ac
an
BE
aF
i8
11

12

13

14
15

16

1?7
18

19

1R

1B
ic
1D
1E
1F

Dec

18
11
12
13
14
15
16
17?
18
19
28
21
22
23
24
25
26
27
28
29
38
31

Ctrl

i C]
“A
“B
~C
D
“E
“F
~G
“H
1
~J
“K
L
“M
“N
~0
“~P

“R
~8
~T
U
~U
“y
~%
~y
~Z

!

A-80

Ch

*

|

|

2

Hex

EA
E1

E2

E3

E4
ES

Eb

E?
E8

E?

En

EB
EC
ED
EE
EF
Fa
Fi

F2

F3

F4
FS

Fo

F?
F8

F?

FA

FB
FC
FD
FE
FF

Dec

224
225
226

227
228
229

238
231
232
233

234
235
236

237
238
239

248
241
242
243

244
245

246

247
248
249

258
251
252
253

254
255

Ch

i

4+

Hex

ca
c1

c2

c3

c4
G5

Cé

c?
C8

c?

Ch

CB
cC
cDh
CE
CF
Da
D1

D2

D3

D4
D5

D6

D?
D8

D?

DA

DB
DC
DD
DE
DF

Dec
192
193

174
195
176

197
198
199

288
281
28z
283

284
285
286

287
288
289

218
211
212
213

214
215
216

217
218
219

228
221
222
223

Ch

hL-

L]

A=}

h=

dl

al

[44

pol

OO —

il

Hex

Aa
Al

A2

A3

A4
s

Ab

A?
A8

n?

AR

AB
AC
aD
AE
AF
B8
Bi

B2

B3

B4
BS

Bo

B?
B8

B?

Ba

BE
BC
BD
BE
BF

Dec

168
161
162
163

164
165
166

167
168
169

178
111
172
173

174
175
176

177
178
179

188
181

182
183

184
185
186

187
188
189

198
191

Ch

Hex

8a
81
82
83

84
85
86

87
88
82
8A

8B
8C
8D
8E
8F
78
71
22
23

74
25
76

2?7
78
29
70

7B
¢
m
7E
9F

Dec
128
129

138
131
132
133

134
135
136

137
138
139

148
141
142
143

144
145
146

147
148
149

158
151
152
153

154
155
156

157
158
159

: ASCII CODES

APPENDIX F

APPENDIX G

ASSEMBLERS, DEVELOPMENT
RESOURCES, AND SUPPLIERS

This appendix provides various
sources for PIC18 assemblers and trainers.
In addition, it lists some suppliers for chips
and other hardware needs. While these are
all established products from well-known
companies, neither the authors nor the pub-
lisher assumes responsibility for any prob-
lem that may arise with any of them. You
are neither encouraged nor discouraged
from purchasing any of the products men-
tioned; you must make your own judgment
in evaluating the products. This list is sim-
ply provided as a service to the reader. It
also must be noted that the list of products
is by no means complete or exhaustive.

PIC18 assemblers

The PIC18 assembler is provided by
Microchip and other companies. Some of
the companies provide shareware versions
of their products, which you can download
from their Web sites. However, the size of
code for these shareware versions is limited
to a few KB. Figure G-1 lists some suppli-
ers of assemblers.

PIC18 trainers

There are many companies that pro-
duce and market PIC18 trainers. Figure
G-2 provides a list of some of them.

Microchip Corp.
www.microchip.com

Custom Computer Services Inc
www.ccsinfo.com

Figure G-1. Suppliers of
Assemblers and Compilers

Microchip Corp.
www.microchip.com

www.MicroDigitalEd.com

Custom Computer Services Inc.
www.ccsinfo.com

RSR Electronics
www.elexp.com

Figure G-2. Trainer Suppliers

A-82

Parts Suppliers

Figure G-3 provides a list of suppliers for many electronics parts.

RSR Electronics

Electronix Express

365 Blair Road

Avenel, NJ 07001

Fax: (732) 381-1572

Mail Order: 1-800-972-2225
In New Jersey: (732) 381-8020
www.elexp.com

Altex Electronics

11342 TH-35 North

San Antonio, TX 78233
Fax: (210) 637-3264

Mail Order: 1-800-531-5369
www.altex.com

Digi-Key

1-800-344-4539 (1-800-DIGI-KEY)
Fax: (218) 681-3380
www.digikey.com

Radio Shack
www.radioshack.com

JDR Microdevices

1850 South 10th St.

San Jose, CA 95112-4108
Sales 1-800-538-5000
(408) 494-1400

Fax: 1-800-538-5005
Fax: (408) 494-1420
www.jdr.com

Mouser Electronics
958 N. Main St.
Mansfield, TX 76063
1-800-346-6873
WWW.mouser.com

Jameco Electronic

1355 Shoreway Road
Belmont, CA 94002-4100
1-800-831-4242

(415) 592-8097

Fax: 1-800-237-6948
Fax: (415) 592-2503
WWW.jameco.com

B. G. Micro

P. O. Box 280298

Dallas, TX 75228

1-800-276-2206 (orders only)

(972) 271-5546

Fax: (972) 271-2462

This is an excellent source of LCDs, ICs,
keypads, etc.

www.bgmicro.com

Tanner Electronics
1100 Valwood Parkway, Suite #100
Carrollton, TX 75006

(972) 242-8702
www.tannerelectronics.com

Figure G-3. Electronics Suppliers

APPENDIX G: ASSEMBLERS, DEVELOPMENT RESOURCES, AND SUPPLIERS

APPENDIX H

DATA SHEETS

A-84

PIC18F2480/2580/4480/4580

25.0 INSTRUCTION SET SUMMARY

PIC16F248002550/440004580 donviges incorporale: Lhe
standard set of 75 PIC12 core instructions, as wall as
an extended set of B new msmuchinns tor the aphims
tion of cods that is recursiva or that utilizes a software
stack Ihe extended et 15 digcussed Bler mothis
saction.

251 Standard Instruction Set

The slandard PICTE eslruclion sel oadds many
enhancements to the previous PlCmicro™ instruction
sats while mamtaming An easy migration trom these
FlCmicro instruction =sfs. Most insfructions are a
single program memony word 15 bifs) bt thers are
four instructions that require two program memoery
Incations

Each singls~word instruction iz a 18-bit word divided
ko an opeods which specifes the instrichion iype and
one or mora oparands, which further specify the
operation of the instmechnn

Tha instruction set is highly orthogonal and is groupsd
ko o besie cAtegones

= Byte-oriented cperations

» Bit-oricnted oporalions

= Literal operations

= Control pperalions

Ihe FICAH insfruchion Set summsanyg in lable P52 sts
byte-oricnicd, bit-oricnted, literal and control
opergtions. Teble 25-1 shows the opoode field
descriplions.

Mnst byte-orlented instruchons have three operands:
1. The fils registar {specifiad by T

F o Ihe gesiinanon of the resull [speched by d')

3. The sccessad memory (specified by 'a')

The MNle regisler designalor T spegilios which [
register is to be used by the instruction. The destinstion
designalon o' spovilics where U resull of B opers-
tion is to be placed. If'd’ is zaro. the result is placed in
the Wl 03 reqister I 15 one the result s pieed In
tha fil= register specified in the instruction.

All bit-oricnted insbiuclom: have Fuee operands.

1. The file register {=pecified by 'F)

2. Thee bilin W Do rogeslor [spocilicd by B

3. The scoeszed memony [specified by ‘a’)

Tha kit fisld d==ignator ‘b’ selects tha numbsar of tha bit
aftected by the oparation, while the le register desig

nator 'f represents the number of the fils in which the
bit is loceted.

Thie: liberal inslwslions many wse soame of lhe Tollowing

operands:

+ A literal walue o be loaded into a file registar
[=pecified by 'k}

+ The desired FER register to load the literal valus
into (specified by T)

+ Mo operand requirsd
[=zpecified by “—)

The control instructions may use somse oftha following

nperands

+ A program memory address (specified by 'n')
= lime e of the Can. ar @erHEH Instnachons
[specifiad by ‘5"
= Ihe mode of the table read and table wits
instructions (=pacifiad by 'm’)
= Mo operand reouirsd
[specifisd by "—)
All insbuclions are 2 single word, cxcepl T Tour
double-waord instructions. These instructions wers
meade double wiord to contam fhe requirsd mermahon
in 32 bits. In the sacond word, tha 4 M5bs are 'L's. i
this second word s ewecuted as a@n nstrochon (by
itsalf), it will axecuts a5 a HO=

Al single word mstruchions are ewecutad In & single
instruction cyels, unless a conditional test is trus or the
program counter 1 changed as a rasult of the instr:
tion. In thesa cases, the sxecution takes two instruction
cypekes with the addibional instruchon cyckes) svenuted
a5 a MR

I e Uik wenrdd imstruchions execits inhaa instraciion
cyclaE.

CIne Instruchion cycle conssts of tour oscillator penods
Thus, for an oscillator freguency of 4 MHz, the nomal
msiruehion exscution ime 15 1 ps 1Fa condhonal test 1
trus, or the program counter is changed a= a result of
an nstruchion, the nstrchon execuion me 15 7 s
Two-word branch instructions (if trus) would taks 3 ps.
| ipure h 1 shows the general fommats that the instre:
tions can have. All sxamples use the convention ‘nnh’
o represent a hexadecimal number

The Instruction S&t Summary, shown in Tabls 25-2,
sts the standard nstruchions recognired by the
Microchip MPASM™ Azszsmizlar.

Sectlon 25.1.1 “Standard Instruction Set” provides
a dascription of aach instruction.

W 2004 Misiochip Tedhnology Inc.

Preliminary

DS3A0E3TA page 361

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

TABLE 25-1: OPCODE FIELD DESCRIPTIONS
Fralkd DascrIplion
a FAM aroess bl
= ¢ HAM lecation in Accass FAM (BSH reqistar 15 gnonad)
= 1. RAM tank is spedied by GER egisle
kiksbs Hit 3ciorass within &n 3-hi Mle reqistar it /).
nae Daank, Selec] Megisler, Used Lo selecl e currenl FAM bank.
O, LR, B, YN ALL stams bits: Gamy, Dign Garry, Zero, Owarfiow, Negative,
d Dersslinalivn selec] bil
d =1 sfore resalt in WRFG
d = 1! store resdlt In flie register T
1T | Nesfinatinn cither the WRFG register or the spacified registor file Incafion
t E-bl Regleter fle agdress (00h ta PPN, or 2-bit FSR deslgnatar (0N B 30
r. 12-kit Register file addross ((000R t2 FFFR) This is the sounns addross
t, 12-pit Register Mg address (D000 b FEFR). This I& the deatination adadress.
1215 Glnbnd Infernupt Frable bit
£ Literal field, congtant dats or label (may be lther an 3-pit, 12-bit or & 20-bR value)
Tk | skl name
TR The mode of the TBLPTR reglster for the table read and table wite Instructions.
Cinky used with fabie road and fahle write: instrictinons
* Mo change to regleter (guch as TELPTE with table reads and writes]
. Post-Increment registor (sich as TR PTR with table reads and writes)
* Mogt-Decrement register {such a& TBLPTR wkh 1able reads and wiitee)
- Pro-lncremont regisher (such as TR PTR with fabie neads and wrides)
= The refative address (2% complement numibery for relstive branch Instructions or the drect addreas for
CallTranch and Reluwn inslruclions
Fi Frogram Courier.
T, Program Cueunles Low Gyle,
FUH Frogram Courier High Evba.
TR Program Cuwanles |iigh Gyle Lalch,
Fio LAY Frogram Courier pper Byta Latch.
™ Puoeear dowin bil,
FELH Froduct of Multely High Byte.
RO Producl of Mulliply Lo Dygle,
& Fash CalfHstum mode sakect bi
%= 0. dunol updale inlofrom shaedow regislers
5= 10 Canam reqisiars Dadan INkATem shatkow reqisters (Fast meda)
TOLTTR Z1 bl Takde Poinler {peinls low Program Memmary ocalion).
AR H-bit labia Lakch.
s Time oul kil
WG Iop-0i-Fack.
u Uriursed ar unchanged.
WLy Watchoiog limar.
HRFC Wibrking regisler faocumnulalo).
i3 Lvant cars (U7 ar 1'%, 1ne assamibiar will gansrats coda Wil = 0. it 5 the recommeandsd frm of uss bar
compatisiny win all Micnsship sofeane tosks.
. 7-hit nffsct valus forindinect addressing of register fles (sownes)
7 T bil ol walue o indived, addre=sing of regisler Bes (deslimlion].
{1 LIptinniEl angumant.
[R=a Indicasles anindewed sddress,
Tlexli I NG cOntenks of Lexl.
Ly s Speciles bil moof e regisler indiculed by e painler cope,
— Assigred .
P Frgrsler bl feld.
E Ini 1 sak ot
1taliaa Lk deflimeed Lenmn (lonl is Sowier).

DS3063TA page 362

Prelimi nary & 2004 Misrochip Technulogy Inc.

A-86

PIC18F2480/2580/4480/4580

FIGURE 25-1: GEMERAL FORMAT FOR INSTRUCTIONS
Byte-onicnted fic regisior nporatinns Example Instruction
15 10 # a7 o
CRCONE | d | a FIFIlF & ARTHF WYRRG, W, T

d - o Tor regult destiration o be WREGS reglater
o = 1 for result destinaban to ba file regester (i
& = 01 ors Acsass Hank

7 = 1 for RER o molect bank

f = #i-hit filc registor address

Byte to Byte move npemtinns |[Pawnnd]

15 12 11 u]

| OFCODE | f{Sounse FILE #) MO MYTITCT, MYTRCE
13 12 11 n]

LS | t [Lastnaton FILE #)

=12 bil like regisher addiuess

Brt-onentad tiks registsr aperatons
15 17 a6 7 0
oPCODC [binTm| = | i | e Wi, hin,

b =3 bil pusilion of kil in fke negisler (T
a = ¢ o e Acoess Bank

= 1 for BER lo seked bunk

T - 3-bit Mle reglater addrees

Lileral operalions
13 8 7 o
QOpSODE | k {lile=raly [ALY PV
k = E bil immedale value

Gontrol oparatnns
CALL. 30T0and Branch opsralions
15 BT a
LPGODE | ner teral) | LTS L]
1 1z M n
1111 | M 1 HCH (htaralh |

n = Z0-pit immadiata walus

15 g7]
COFCOOC sl =70 [Reral) | CALT. MYFTHCG
i 121]
n-= 16 fi= flitcral) |
& - sl bl
15 110 o
DRGOUE | e 00 (lkeral) | EER MYFTHC
15 0y 0
OPGONF | n=70= fitcral) | nE HYFING
¥ D004 Misrochip Technelogy Inc. Preliminary DEALEATA puge 353

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

TABLE 25-2: PIC18FXCOK INSTRUCTION SET
i 18-Bit Instruction Word
”D"““”r"::' Description Cyclos | Len ASta'tﬁ o | Notes
BYTE-ORIENTED OPERATIONS
ADDWE I d, o Add WREGand T 1 0010 0lga tfr: tree (O D0 Z OV, M1, 2
ADDWFC f d, e AddWREC and Carry bit to f 1 it auda frer rerr (G, DS, 2 OV N (1, 2
A Tod, A& AN WAL (3verh T 1 okl i e trer AN 14
CLRF fa Claar f 1 oLl0 l0la [L[CLC [LEf|Z 2
XM td & Cemglement t 1 A0 17As tEts trer [AOM 1,9
CPFSEQ 1 a Compars fwith WREG skip= 1{2or3)| 0Ll0o 00la [LLCLC [LIC |Mone 4
CH BEGE ta Comgare Twidh W G skp= (1P ord)| 01in nvga rrrr reor [Mone 4
CPFSLT f a Compars with WRES skip = T{2or3)| 0Ll 00%a L[LLC LLIC |Mons 1.2
DECF f d, & |Decrement f 1 o duda Frrr rerr (G, DG 2 OV N1, 2,08, 4
DECFSZ [d,a Degremenl [Skipild 1{2 00 3)| 0010 1ilca ftiz izt |Mono 1.2,2. 4
DEFEME f d, & Decrement f, Skip if Mot O 1{2or3)|man 1nda e Orrr |Mone 1,2
[MCF [, & Ingromend T 1 0010 10da tfi: prze (G DG Z OV M| 2 3.4
IMCFSZ2 f d, & Incrementf, Skip if 0 1{2erd) vy 1uda rrrr oo |Mone A
IMFENZ I, s Incremenl T Skip il Mol 0 T{2 e 3} 0Lo0 1oda trr: prst |Mono 1.2
[DRWF f d, a |Inclusive OR WRES with 1 000l 003a L[CLC LCLCC(Z M 1.2
BACIW tod oA (Movet 1 0107 fffa trie rrer |2 M 1
MICWFF f.. fy Mowvef, (sourca)te 1stword 2 lledg CLEL LLLL CLLLC |Mons
Iy {deshishon) Hnd word 1117+ttt trte bEet
MCAAF fa Move WREG to f 1 OLlo 1ila [LLC LLLL |Mona
WAL WA t A Muthghy W20 (3 wath T 1 N0 fnla trte tret |Mone 1.2
MEGF I,z Plezggaale: T 1 0110 1iga trrr trer (G DG 2 OW N
RLCF f, d,a Rotate Left f through Camy 1 AT I BT T EPI o o o S Y) [1,2
RLMCF I, &1 | Replabe Lell T iMo Canryd 1 0130 0lda tEt: trer |£ M
RRCF f, d, & Rotate Right f through Carny 1 [T I B T EV o o S Y o [
REMCF [, o, a1 | Feelabe Righl [{Moe Cuarry) 1 0130 0d0da tir: trEf £ M
SETF fa Set f 1 g 1 Ferr oo |[Mone 1,2
SUaE 1 od oA Subiract Firom WALl (3with 1 Mol avda e reer 5 10 2 OW N
borroer
L tod, A Subtract Wadl O fram 1 M7 19da tree e [1EE 2 O N2
SUBWFE f d.a Subfract WREG from fwith 1 OLGL L1(da [LCLC CCCr (C,DC 2 OV M
PsaITERsF
SWAPF f,d,a Swap nibbles in 1 001l 10da [L[LLL CLLLC |Mons
18 Ess ta lest t skip D TP ardy n11n 011a rres ottt [Mone 1,2
AORWNE [, Erglusive OR WREG wilh T 1 0oL 10da fRr: titt (2 M
Maote 1@ When a Port regeter 15 modified as s funchion of g2 (e g sooes souers, 1, o), the valie used will be that
walu pressenl on Lhe pins hemesehes, Foroceample, o7 Bee dala lalch s "1 R o pan conliguied as npul and is
driven low by an external device, the dats will be written back with a ‘o',
Z: T lhis imesliuclon is cxculed on be TMBED regislen (and where applicable, 'd” - 13 Bee prescaler will be clemed
if sesigned.
F. WM Program Counler (PG is modiicd or g condiliensal besL s e, Bee insboclion reguires beo cycles, The scoond
cycle s evecuted a5 @ nu
4. Some mslioclions e yo-asard insbocbomss. The scoond word ol hese insbouchons: will be coeculed as @ M90F
unless the first word of the instruction retrieves the informetion embedded in these 16 bits. This ensures thet all
peragraam mermary lecalions haeo o vedid insliuclion,
&: Ifthe table write starts the write cycle to internal memory, the write will continue until terminsted.

DS3063TA page 364

Preliminary

& 2004 Miciachip Technulogy Inc.

A-88

PIC18F2480/2580/4480/4580

TABLE 25-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Mnemanic, Deacription Cycles 1o BH Insfretion Word Status Motes
Operands MSh LSk Affected
EBIT-ORIENTED QOFERATIOMNS
1361 tobo& |l eart 1 1301 hhba trtt trr+ | Wone 1,9
BEF bz BilSell 1 1000 bioka trrt rrtr [Monc 1,2
BTFSC f, b, = |Bit Testf Shkpif Clear 1(Zaerd)| 1o bbta 00 0000 | Mone 3
BTFSE [boan | Bl Tesl [Skip il Sel 162 wa 3} L2010 boka £t trir |Nonc 34
BT f, d, = |Bit Toggle f 1 w1 bk ©Orr e’ |Wone 1,2
CONTROL OPERATIONS
BC n Branch if Camy 102) 111w nnnee nnnn (KNene
BM n Branch il Megalive 12} 1110 0114 moroy 1owm (Nome
BRC n Branch if Mot Camy 1 1 w1 mnnee nnnn |Wone
BMM il Branch il Mol Megalive 12} 1110 0111 rmoooy 1w (Noemne
BROW n Branch if Mot Cwverflow 1) 1 Mo mnnee nnnn (Nene
1B n Hranch i kot e 1) 1110 nbi1 rmmne mnmn | Wone
B n Branch if Crvarflow 112) L1110 0Lo¢ reows o (Nons
Hiam n Hranch Lincondmianally b 1101 prmm rmmne mnmn | Mone
BZ n Branch if £aro 112y Lilo 0000 s o (None
AL n & |Gl subrootne Tt word » 11160 1102 kkkk kkixk |RMone
2nd word LLLl kkkk kkkk kkkk
CLRWDT — Clear Watchdog Timer 1 worely g poag onon | TOL D
(RELTY Degirnal Adjusl WREG 1 n3as opop Dood o011l |G
COTS n ot eddress 1=t word 2 " 1117 kkkk kkkk |None
2nd ward 1111 kkkk kkkx kkxk
Mo — Mo Cperation 1 iRy g oo oo (Kene
Mo Mo Cperalion 1 1111 X X oy | Monc 4
PP — Pop top of return stack (TOS) |1 ogos 0000 00g 0L10 |None
FLIEH — Fush toponf retuen stack { 1025 (1 NG nLon Dong 0181 | Mene
RCALL n Relative Call 2 L1ol Loy mwwues roren (None
141 =01 Hofhware deving |desst 1 nann pbon o 1111 1111 A
RETFIE 5 Rieturn from interrupt enabls 2 0oof Op0d o0l 000w |(SIERSIEH,
LI A
RETLW k Relurm with [lceed in WREG 2 0306 L1100 kkkkE kkkk |MNonc
RETURM = Fetumn from Subroutine 2 mony oo aaun ools |Mene
SLEEFP o il Slandbrye mcda: 1 o300 oLos Doo0d 0011 (T, PD
Meote 1: When a Mot register is modified as s function of itself (e.g., move oRes, 1, o), the value used will be thet
vialue pressenl on lhe pins herreschoes, For cogamphe, 7 e dala labeh s L Tea 2 pin confligured s inpal and is
driven low by an external device, the data will be written back with a “o’.
20 Nt irsbiaclion is ceeouled on lhe TMRO regrsber {and where appdicable, “d' = 1), Ihe prescalen will B cleared
if =ssigned.
3. I Progriam Gounber (PGS s rmodilied or a condilionzd sl o, e insbsclion reguines e cecles, The scoond
oycle is executed as & mu
4 Some insbiuchens are weo-veord insbuclions. The seoond word of hese insbeclions will e cxcouled s @ HOE
unless the first woord of the instruction retrieves the infarmation embedded in these 146 bits. This ensures that all
pragrarm memeay localions haee 2@ valid insbiuclon.
5. Ifthe table write staris the write cycle to internal memory, the write will continue wntil terminated.
% D004 Misrochip Technelogy Inc. Preliminary DEALEATA puge 385

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

TABLE 25-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)
16-BIt Instruction Word

m:' Deacription Cycles Py b ﬂmﬁ usl Notes
LITERAL OQPERATIONS
AL K Sadd Iteral and Wl 3 1 DO 1111 kkkk wkick [[X 163 2 0w M
AMDOLW k. AMD lilzral wilh WREG 1 oood 1011 kkkk kkkx [ZH
IORLW K Inclusive OR litera] with WRES 1 pung T kkkk o kkkk [Z M
LFER Ik Mlonves likerad {12-bil) 2nd word 2 1113 1110 0%ft kkkk |Mono

to FER{T) 1=t word 1191w kkkk kKkkk

MOVLE k. Mone: liberal o BER<3.0> 1 oood andl 0000 kkkk |Mone
BACHLW K Mowve literal to WRES 1 pog g kkkk o kkkk [Mone
BALIL 1N i Mumphy Imeral with W41 03 1 ponit 1131 kickk kkki |Mone
RETLW k Return with litsral in WREG 2 pood 1100 kkkk kkkk [Mons
L K Hubtract Wdl 0 tram Iiteral 1 DO TN kKEkk wkr [[2 163 2 W M
KORLW b Exclusive OR literal with WRES |1 pood L10l0 kkkk kkkk |Z M
DATA MERMDRY « : PROGRAM MEMORY OPERATIONS
TEBLRDO* Tabla Read 2 Dood 0090 0o0d Lood |Mons
(REINE AL Itk Hesd with post increment DOREE NGO pion 1007 |Mone
TBLRD*- Table Resd with post-decramant pOO0% Qo000 0000 L10Lld |Mons
NEINE AT Itk Hesd with pre merement DOREE N30 poon 1011 |Mone
TBLAT Tabls Write 2 DOOG QoGn 0000 L1100 |Mons 5
TELWT =+ Table Write with post-increment oy oo o e |None L]
TELWT*- Teebohz Wrile wilhy posl-degicmenl poogd aoda og0h 1113 |Meone b
TELAT+ Table Write with pre-increment UG oogd g 1111 |Mone o

Note 1: When s Porl regeslern is modiliod as @ lunclion of lscll {e.y., XOVE BORTE,

L, 20, Uz wedhue wsed wall be: Lhal
value present an the pins themselves. For example, if the dsta latch is “1' for & pin configured &= input and is
chrivwen ke by san cslernal dowice, e dalzewill be weillen backowilh z2cto’

2 Ifthis instruction is executed on the TMRO register {and where applicable, 'd” = 1), the prescalerwill be cleared
iT asssigpmzd.

3 I Program Counter (PC) is modified or & conditicnal test is true, the instruction reguires teo cycles. The second
gyl s coeaulod ae g HOE

4: Same instructions are two-word instructions. The second word of these instructions will be executed as 2w
wimbezes W vl wecord el B insbooclion redricses e infarrmation cmbedded in lese 18 bils, This eosurces Uhial all
program mernory lecations have a valid instruction.

B IMlhe Lo waile slarls e weile: gwele o inlesnal memerg, Lhe saile will conbinue anlil leominsled.

DS3063TA page 366

Preliminary

& 2004 Miciachip Technulogy Inc.

A-90

PIC18F2480/2580/4480/4580

25.1.1 STAMDARD INETRUCTION SET
ADDLW ADD Litcral to W ADDWF ADDWito f
ST ADDLW K SyniE ALMWNE ridd{ak
Cperaimds. D=k« 258 Oprarnds, 0255
Operahon: W+ = : -: |[31]|
Status Affcchod- MW G, DG, -
Encod | | | | | Cipsaratan: [+ () — dEst
COng: L 1] 1111 kkkk kkkk
4 Shalus Alfecled. M, OV, C.DC, Z
Mnmariphinn The: ceaterts af W e added o the _ : . — —
B-bit Weral &' &nd the result I placed Encoding: | oone | wada | reer | e
in W Noscription: Add W ta register T 'd' is "o, tho
. rasLUil 15 storad 1n WL IFd s, the
Wiords: 1
rell s wlored back in regisher T
Cycles 1 fatault).
O Cyule Aolivily. M e’ i 0, lhe Aocess Dunk s sededed,
1 o o] 04 Ifais'", fho BSR is used tn seloct the
Decode Read Process | Wils lo W GPR bank {defaul). _ _
literal 'k Mata If 2" i= 1" and the extendod instrsctinn
aet e enabled, this Instruction operates
1 Iindexed Lileal Ofsel Addiessing
Exampis: AoLE 1uh mede whanaver |2 # bkh). See
i Seclion 26.2.3 "Byle-Orienled and
Refre Instruction Bit-Oricnted Instructions in Indexrd
W= 1un Literal Offset Mode™ for detalia,
Aller Ireslrucdion
W o= mup Whnrds 1
Gy, 1
Q2 Cycka Achyvity:
ai oz Q3 o4
ecoda Haad Progess WarTte ta
tegisher T [NERES deslinalion
Crample; ALY ke, u, u
Gufure Inslruclion
w = 1ih
REG - OCEh
After Instruction
w = 0OLln
RCG = 0CZh
Mote: All MICAE instructions may take 8n optional label argurnent preceding the instruction mnemaonic for uze in

symipalic addresssing. Ka kbel & wsed, e inslruclon Bameel hen booomes. {abel} insloocion argumenl(s)

W 2004 Misiochip Tedhnology Inc.

Preliminary

DS30E3TA page 367

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

ADDWFC ADD W and Carry bit to ANDLYW AND Literal with W
Synlan. ADDWTS T [d fa)) Syl AMDLWN Kk
Operanda: Q=235 Operande: D= 285
: - IIEH Oiparndion- (W} ANTY K — W
o Sstus Affected: M T
Cipesralion. 0 = (N + S o des !
Encoding: ARIRE 111 kkkk kkkk
Statue Aflected: MOV, C, DC.Z ™ wos | ot | | |
Encoding: — 3 — P Desriplivan. The conlents of Ware AHDed wilk L
neaeng e | = | B0t itaral % | he rasult 15 pEced I W
Deseription: A W, the Carmy Mg and data memany Whards 3
Incation T I 'd is o', fhe resolk is ’
pleced In W, 1T e 1, the result s Lyoles: 1
pluced in duls memeey 01 Cyele Ackhdity-
II?WTI!M 'f-ll i Dunk is selecled L = = =
' i, e Access Dunk is selecked. - -
I8 151, tha B5H 5 Usen to 5slect tha Mocode | Read liorml |- Process | ke fo A1
G bank (sefau). K Dete
K" is 0" and the oxtended irstruction
set k2 enabled, thie Instruction operates Example: ANDLH 15Fh
in Indrxnd | deml Cffset Addressing Rrdnr Instruchian
mods whensver b2 B BN, Ses W - A=
Seclivn 36.2.3 “Byle-Orienled Aller hesbodion
Bat-Ginented Instructions in Indexsd W = 13h
Literal Offset Mode™ for detals.
Woros: 1
Cydes. 1
2 Gyl Actviby:
a1 oz a3 o4
Lsacnca Haad Hrocass Wirha B
1epyeshes T Drala e clinalivn
Cxurnple. BTITET RO, o, |
Bafore Iratruction
Carry bil = 1
HEC = Xh
W - 4Dk
Aficr Instrsction
Camvbt = O
RCG - {&h
WAF = &ih
DS30EITA puge 385 Preliminary & 2004 Misrochip Technulogy e

A-92

PIC18F2480/2580/4480/4580

ANDWF AMND Y with £ B Branch if Carry
Syt AMODWF T{d{al} Sy BZ n
rand s 0 - f= 255 Oporands A nc 127
s
d "' [.1] Opralian. il Caanny bil i 1"
= [01] (PG = 7= 90— PG
Operation: (W AND. - dest Shalus Alecled. Hune
Sintus Affectes: M7 Enceding: | 1110 | iy | o | osouw
Cricouing. | i | “lda | rrer | e | Descriplion. Il lhee Carry bil is°1 7, lhen lhe program
Lascmgphon: Ihie conbarnts of W are AML'ed with will branch.
regisler T 10" i "0, e resull i sloed The 2's complemenl momber 20 i
inWWIFd = : fha rasult is sfared back addad i the L. Snca the PO will have
I raglster °r {defauit). ncremented to fetoh the next
If'a" & 1, the Ancess Bank is sclected n=fniction, the new addoss will ke
I1'8" I5°1", the BSR ka uaed o aslect the MZ 12 120, This Instructon & then 8
GPR bank [delaul). rew sk insbiuclion.
It'a" i "o’ and the extarded nstnichion warde: q
sl i wmabled, his inslroclion aperales
In Inaed Lisrsl Oifset Addrassng Cypeles 12
mode whenever TS 8BS [SFh). See Q Cyclke Actvity:
Snction 28.2.3 “Byfe-Oricnted and i Jump-
Bit-Orlented Instructiens In Indexed
&1 a2 a3 2
Lilzral OiMsel Mode™ for delails. -
MNecnde: Riond el Process ikite: ta PO
Wores: 1 w Data
Cyrles 1 Hn Mo M Mo
@ Cycle Activiy: operation | operation | operstlon | operation
il &7 o o e J‘-"-"PIIH Q2 Q3 21
Dwcode Reud Proceus Waile s p— pray— P "
registar 'f Mata drstinatinn CERaE S R [REESRs a
' [RERE] Qparalion
Fxample- LT s, O, 0O
Exampe; EEEE B =
Delore n=drodion)
W = 17k Berfore Inshructionn
REG - CEh Fi = addmess (HERE)
Al Ireslrucdjon Mler Irrslroclion
W = 0Zh It Carmy = 1;
REG - rc - a@ddregs {HERE 1 12}
1§ Carry - 8
Piz = Ad0mEES (HERE 2k

¥ D004 Misrochip Technelogy Inc. Preliminary DEALEATA puge 385

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

BCF Bit Clear f
St BCF T k{a}
Opcrands: (VRS Eae
O=bay
A1)
Ciperation: 3 x el
Hahus Affccted Hioneo
Cocoding. [T | bbba | FEET | Frrr |
Lescnplion: Bit B i raqester 15 cleared.
IMa' s, e Access Dank is selecled,
It'a ks 'L, the B5H 15 used 10 selact tha
GFR bank (defaul).
o' is 0" and the extended instriction
set b2 enabled, his netnuction sperates
in Indrand | #emal Cffsct addressing
macks whanavar F.L 2 (HHn). Ses
Seclivn 36.2.7 “Byle-DOrienled
Bat-Dnented Instructions in Indexad
Literal Oifsat Mode™ for detalis.
s 1
Cydes. 1
2 Cycla Activrby:
il a2 Q3 Q4
LDecnde Haad Procass Wints
regisler T Craly reygisder T
Dcurnple. T FLAND RRO, T, O

Before Insiruction
FLAG ROG - C7h

After Instnection

FLAG_RLCG - 47h

BN Branch if Magative
Syt BN n
(Iparunds A me 137
Operalivn. il Mepgalioe bl
[PC)+ 2+ n = PG
Slalues Alecled. e
Enceding: 1119 FLLE | nnnn | nnnn |
Dwesraiplion. Il lhe Megalive bl is 17, lhen U=
program wall ranch.
The s complement numbes 20’ =
added to the PC. Sinca he PO owill have
InCrementad to febeh the next
instruction, the now addross will be
FC0 20 20 This Instructian & then a
o wyche irsluclion.
WWarda: 1
Cycles: 1%
Q Cycle Activity:
If Jismpe
=} Qz Q3 [
Mhocnd Rrad literal Process | Wit ta PG
o Data
Mo N N Mo
operstlon | operatlon | operation | operatian
If M _himpr
= 22 23 [l
Nocndo Rrad literal Pmcess K
n' Uata aperahon
Exampla; HEERE EH J v
Brfrre Insfnuchion
P = wddress [z
Aller Inshiudion
It Megatva = 1
[- gdudress {Jamg)
IT Megalive - 0
P = ¥dmss iHEEE 1 2D

DS30637A page 370

Preliminary

& 2004 Miciachip Technulogy Inc.

A-94

PIC18F2480/2580/4480/4580

BHNG Branch if Mot Carmy BMMN Branch if Mot Megative
Synlax. EBHC n Synlux, OMM n
Operands: B Eans 127 Qparanda; -12B2n 127
Cperatinn if Carry hit is 1" Clporation if Megative bit is '
(FClv202n -PC PCyn202n P2
Sttus Affechod- MNono Satus Afincicd- Mone
Encodng: | 1113 | o011 | nono | nonn | Encading: | 1110 | 3111 | nnnn | noom
Lassmphon: 11 the Cammy Dt s "o, than the program Lsascnplion: IF tha Magakms it 15 °0°, than the
will branch. program Wil branch.
Thr = complement number n'is The P's camplement rumbear 200 =
added 1o the MC. Snce the FCwil added 1 the PC. Snce the PCwill heve
hawe incremented de fotch the nod noremanted o fotch the nead
Instraction. the new address will e nstnuchan, the new addnass wil be
PG+ 2+ 2n. This imslrusliva i lhen a PC +2 + 2n. This inslruclion is then
Pand-cycla INErucTion. TWO-CVCHS INSTICDon.
Whirgks, i Winds 1
Crycles: HZj Cycles: 142}
(} Cyrle Activity {1 Cycle Achivity:
IF Jurng: T Jurp;
i o ol 4 o 02 i O
Decogde Read Meral Mrocees | Wrke 1o FC Decode Read IReral Frocesa | Wilte o PC
n Mata n Mata
I M Rl M Mo Mo Mo M
aperalion eperlion vpreralion wperalion wperalin operalicn operalivn operaliva
IF Mo Jump: It Mo Jump:
[oz a3 24 a1 az Qa3 04
Liacaike Faad itaral Procass e Laceda Haad Ikeral Frodess L]
o Daala wperalion o Dl operaliva
Cxample. MERE TE Tumm Cxanple. TRETR FHH T
Bators Instruction Batore Instmichon
PC = address (NRRR P - addiess (TITTTD
Afar instructen After Instnacton
rri.'.!ﬂnpj,' - It Ne%mrn.'& -
L = address L) i = addross (o)
It Carry = 1 It Meqative = 1
rc - gudress |{HERE) rz - gddregs (HERE 1 2}

¥ D004 Misrochip Technelogy Inc. Preliminary DEALEATA page 371

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

BHOV Branch if Not Overflow BNZ Branch if Mot Zero
Synlan. GHOW Syrilax, OHZ n
Qperands: 123 2n 127 Operande: 1282 ms 127
Ciporation- if Croerfloe bit i 0° {lprradion- if Porn hif is 0"
P20 2Zm 2 PC (FCiv212m PG
Hahus Affoched- Hone Stahes Affcrtod- Mnnc
Encading: 1114 | oL0L | anmm | annn | Encoding: | 1117 | el | nnnm | nnnn |
Lescnpinn: It thea Creartiow it 15 07, han the Lsascnphien: It thia Lemd bt i °0°, then tha program
prograim Wil branch. will bramah.
The s complemant number 2o’ is The #s camplemend number 0 is
added ta the P 3ince the PCwWl have gdded to the MC. Since the MC will have
incremanied tn fotch the nost incremenhed ta fhoh the next
Insmachon, the new atdress will ba Instruciion, tha new address will ba
PC + 2+ 2n. This imsbruclion i hen 2 PC + 2+ 2. Thiss imdroclion is lhen a
PD-cyCla Insmuchon. two-cycls Instructinn.
Wy, 1 Wirds, 1
Cycles: 12} Crycles:]
3 Gycle Activity {1 Cpele Acfrity
IT Jump: " Jurng:
i ar x| 14 H o 4] O
Decode Read Heral Process | Wrlte o PC Decode Read Iteral Froceas | Wite o PC
n' lata n Matn
R Mo Mo Mo Mo [M I
wperalion wperaliun operbiun opralion operalicn upseralion wperalion aperalion
1T Mo Jump: IF ke Jump:
@ @z Q3 Q4 = oz o3 o4
Decade Hazd karal Procass Mo Lracoms Head Itaral Frocess T2
n Craly opralisn L Dales aperalion
Cxurnple. ITRTR MR Tuaneg: Cuammple, MRRR N7 Tuap
Babars Instrection Betons Instruchon
PC - addresx (METRT) = - wddiess NERE)
Afer Insriction Aftar Instruchon
1M Overfiow - ITZen - .
P = adrkres [adimegsd P = mddromes [ENTRTIC IS
It Cvertiew = 1 It Lam = 1
rc - addregs (HERE | 2) [- gddress (BERE 1 2)

DS30EITA puge 372 Preliminary & 2004 Misrochip Technulogy e

A-96

PIC18F2480/2580/4480/4580

EBR& Unconditional Branch BSF Bit Set f
Synlax. BRA n Synlux, BEC b]
Cperande: -1024 = m= 1023 Operanda: Dolc255
Operatinn: (PC} + % + 0= PG b7
a0
Statia Affectad: Mo
| | | Opralian. 1 3 i=b>
Encoang: 11101 =] alalalal falalalal
. | — | Statue Aflected: None
Dergezripalion. fadd Lhe 2's complemenl oumber “20° e Fronding: — — ——
tha L. SINca tha PG will havs meneing [rooo | s
Imcremented to fetoh the mext Deacrptian: Bit "t In reglatar ‘T ks set
irstricticn, the new address will be Ifa'in o', the Arcess Aank is selected
PC1 20 2n. Thig Inatruction ks 8 IF'a le ', the BER s used to select the
Loy eyl irmslruclive. (PR bank {defaulf)
Wiords: 1 IFa’ e "2 and the extendad Inatrection
Cycins o el v erpbled, his inshhudion operales
. N Indexed Litaral Oftsat Adrassing
O Cycle Aclivily. mrde whenewer 1053 (SMh). Ses
21 2] o4 Sechon 25.2.3 “Byte-Onented and
Ducode | Mesd ileel | Pooess | Wis o PC Blt-Orlented Instructions in Indexed
o Mata Literal Offset Mode™ for detniks
I M o §1) Wionde: i
aperatinn rpcration rpcratian npcration Uyl 1
Q@ Cyole Aclivily.
Exampisc HEEE HEA Junp a1 2 3 (14
Oeelone nsd ruclion D Foaad Prouss While
Hi = adiress (HEHE} ragester 1 Lizia ragestar 1
Aller Ireslrucdion
=l = ardress Ldamp | mminle: BEp FLAE R Y 1
Cefure: Inslruslion
FLAG BE: = D&h
Aler Irrshroclion
Fl&& RFiZ = @Ak

W 2004 Misiochip Tedhnology Inc.

Preliminary

DS30E3TA page 373

APPENDIX H:

DATA SHEETS

PIC18F2480/2580/4480/4580

BTFSC Bit Test File, Skip if Clear
Syl OTrsC [b [a]
Operands: 0=l 235
Qub=?
a=[01]
Oyperalion. skip il [[<b=} = o
Habue afected: Hione
Fnocoding: e | Tilil rrrr rrrr
Deacription: ITBlt "B Im regleter T k5 07, then the mest
instruction is skipped K bit ‘B is 0, then
the next Iretniction Tetched during the
currenl nsbiuchion sxeculion i~ dizcded
ard a HOF i executad Instaad, making
Lhiss 2 bewe wyuke insboclion.
It'& 15 "0, tha ActEsE Bank 15 selactad. It
wis 1, lhe OSSR s used o seledd e
GPR hank (defaulf)
Mg’ e "ot and the extended Inatruction sat
im enabled, this instrsction operdesin
Indexed Lieral Ofeat Addresaing
oy wherever [0 95 (M),
Sed Sechon 25.2.3 “Byte-Dnanted and
Bil-sOrienbed Instruclions in Indexed
Literal Offset Mode" dor detais
Wiurds. 1
Cyclas: 12}
Maode: 3 oycles i wkip and lollowed
by 3 Zaword Instmichon.
@ Cyde Aulivily.
a1 Lz P 24
Drioe [Prucmss M
reqishar 't Lata aparaion
I eshejp.
1 a2 P 4
Mo Mo P L]
aparation oparaten oparation aparaton
IT ship and follaved by 2 weord inesdroclivn.
.l a2 P 24
Ho Mo P M
aprratinn oporation npcrafion npcmation
L] Mo Mo 1
aparatdinn nperafian nperafion apcrbinn
Example- 1EKK 1L B, 1,
FRALEE H
TRIMR H
Befare Imatruction
PC = address (TTRTETD
Afer Instruction
rrLac=i= - 0
P = addmess e
ItFLAL=T> =]
PC = address | FRLARD

BTFSS Bit Test File, Skip if Set
Symlax, BTrES I b La)
Operande: D=T1=255
Deb«T
3= |1
Operalivn. skip il {f=R=j = 1
Halus Allected: Mone
Frcnding: pn | il | rrrr | rrrr |
Deacription: 1P Bt "D I reglater T 18517, then the next
instruction is skipped IF kit B & 17, then
e mext Instruction fetched guring the
currenl imslruclion execulion is discarded
and & NOE 15 axacitad inshaan, making
lhis & bwo cycle imslroclion.
Ita’ 150", thea AcoAEES Bank 15 selachan. 11
Wl lhe GER s wsaed Lo selec] lhe
GPR bank {defalt]
It'a" 15 "2 and the extended netrucion
set in enakled, this instiecticn opormies
In Indiexed Literal Offael Addreesing
mude whenewver <235 {SCh).
Faa Section 25.2.3 “Byte-Dnented and
Bil-Omienled Insineclivms in hdexed
Literal Offsct Mode™ for details
Wiands. 1
Cyolas: T2
Nole: 3 oyshes il shig and [olowed
Iy a Z-word Instrechon.
QO Cypole Ackiily.
21 12 13 4
Decude Feud Procesy Mo
ragistar 't Utz op=araten
M =kip.
21 12 3 14
K1 M Mo Mo
oparatan apEraion aperahon opsaraten
Il skip #nd lolloveed by 2 word msbodion.
21 12 13 4
L1 Mo No Mo
npcration nperation opreratinn nperafinn
M I Mo Mo
rperatian apemation aperatinn nperafian
Examplc- HI211E [T s, 1, O
FALEE
TR
Befone Inetnicthon
P - wdde=s (TTRER)
Aftar Instructon
Iritg=1= - 0,
. = pddress Geenead
HHLAD=1> = 1;
PC = wddieses | TROED

DS3063TA page 374

Preliminary

& 2004 Miciachip Technulogy Inc.

A-98

PIC18F2480/2580/4480/4580

BTG Bit Toggle f BOW Branch if Overflow
Synlax. GTE I b {.a] Synlux, 0OW n
Operande: O0=r=235 Qparanda; -12B2n 127
Qub<? Operatian: if Crvreficw Bitis 1
a= [PCyn2aZn »PC
Operaliva. {Fb=) o Feb Satus Afincicd- Mone
Stets Altected: Hone Encading: | 1110 | 3108 | nonn | nnnm
Frcadng wive | e | oreee | oeeer | Lescnptin; It thes Cwarthow bt 15 2, Ehan the
Description: Bit 'L Im date memany koation T 1 program will branch.
imeertad The P's camplement rumbear 200 =
e’ ks ', the Access Bank le salected. added ta the PC. Since the M will
H'a'is "1 the BER & imed ta solect the have incromenfod o fztch the noxt
UFH bank ekl nstnuchon, the new addnass will be
N s 0" and Hee exlended inesbudion PG +24+ 20, This insbucion is len e
sat 12 enaban, MIS INEChon coeratss TWE-CYCH InStnictan.
in Imdesed Lieral Gifsel Addressing Wiards i
mote whenaver bz B L), Ses] -
Section 25.2.3 “Byte-Oriented and Cycles: 13
Bit-Oricnated Instructions in Indexed {1 Cycle Achivity:
Literal Offset Mode™ for detalle. it Jurnp:
Wiards- 1 i i {13 4
Cyeles: 1 Decode Fead [Reral | Procesa | Wite to PC
I Cycle Actvit m Rata
¥ ¥ Mo] Ha]
a1 a2 o3 Qs wperalin operalicn operalivn operaliva
Lacoda | Heaad | FPrcass | Wi It Mo Jurp:
regleter T Crata regter T a1 a2 as 04
_ . Decoda Haad Iteral Frocess Mo
Cocarniple. Lt TLATE, 4, 0 ‘' Drala operalivn
Betona Instructon:
PORTS - i1l nlel [TSh] .
Afhor Irestrctinn: Cxunple. TRETR RO T
PORTC - olle ¢lol [B5h] Sefore Inetniction
PC = uddiess (TTRRETD
Aftar Insmicton
15 Oy Moae - .
" = address (0 gzl
It Chvartiow = X
PC - addiess (TTFTT « 20
¥ D004 Misrochip Technelogy Inc. Preliminary DEALEATA puge 375

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

BZ Branch if Zero CAlL Subroutine Call
Synlan. OZ n Syrilax, CALL k]
Operanda: AFBEEIn o127 Operande: D<= 1018575
Ciporationr if P bitis"1” s 0]
PCyv2e2n o PC Operation: (MC) v = TOE,
Status Afocted Hone k s PC=2D.1=,
ta=1
Encading: 1114 |]ululs] | nnnn | nnnn | (A WS,
LIECpRIon: tt the LBro bit s "2, than the program (intus) — STATUSE,
will branch. (B=R) - B3R3
The s complemant number 2o’ is Sintus Affrcted- Mrne
added ta the T, Since the PCwl have -
Cruading.
incremanied tn fotch the nost g .))
nEtuchon. e new asdrazs wil be 158 word (K= 0=} 11149 11oe | k.kkk | kkkk,
PC+ 2 4 2n. This islroclion is len Znd werd (k=195 1111 | kyokkk | kkER | Kkkk,
TAD-CCi INEtnIChon. Lssscnphion: SUbraLtineE call at antirs 2-Mhbyts
Wae s, 1 mernory range. Cirsl, reluen sddressy
. [P + 411 pushed ane the raturm
Cyoles: 13 stack If's’ - 1, the W, Stetus and BIR
3 Cycle Activity registars ane alsn pushed inka fheir
i Jump: reepe«;:ﬂ'.re ehadiow |'I’."Q|E|E|'E«. VI,
o o o r4 E;"-.a'l'lb;lﬂﬁ arkd I.:IEE_E&” ‘Ish; .'l.t;l'lu
u DCEURs | ult). n, thea
Decode | Reed Meral | Frocess | Virfle fo FC 0 bill vashuee ' s lsselied inloy PC<20. 1.
n Mata &l is o han-cycle insfriction
T Mo Mo Mo
wperalion wperaliun operbiun opralion Wiards. 2
It Mo Jumps Lyoies: Z
at @z a3 Q4 Q@ Copule Aclrely.
Lecoda Hazd aral Frocass M 31 1 13 (2)
Ll Dl operalion Dwcode | Resd lileal | Push PC Lo | Reed lil=al
ey e, slack el i-E
Cxurnple. ITRTR A% Tumg Whiile b PC
Mo T (i 1
Bators Instruction
P - addess (e opersilen | operatlon | operation | operation
Afer Insriction
IF Zerg - 1 Cuaimple. NIRRT AT, TIWRE, |
3 = adrkres [adimegsd
It ey = i Betora Instruchan
rc - address [BERE 1 2} PC = address {TIRRRG
Aftor Insfruction
P - addrees [THERE!
TS = addreys (TIRRE = 4}
W = W
BESRSZ - [EZR
STATUSE- Salus
DS30EITA puge 376 Preliminary & 2004 Misrochip Technulogy e

A-100

PIC18F2480/2580/4480/4580

CLRF Clear f CLEWDT Clear Watchdog Timer

Synlax. CLEF T {x] Synlux, CLRWDT

Cperands: O0xf=<255 dp=randa: ang
o [31] Operatian: Q00 — WIT

Cyperation: opdh o T Q00h_ WOT puatecaler,
1 +Z 1 TG,

Stetus AMected: I =R

Fncoding- | niin | 1™ | rrrr | rrrr | Salus Allecled. TO.FD

Descrption: Clears he cortents of the specied Encading: | = BLze
regishor Noscription: [MW T 1 insfruchion resets the
If'g b 'y, the Access Bank |s selected. Watchaog Timer. 1 elac resete he
I ' is 1", the RER is used o selost the puslzdler of e WOT, Skl bils TO
IR bank igatault). and FL ara sst
e i 07 and e exlended indudion Wioids 1

sat ks enablad, Mis nsmichon operates

in Indexed Livrsl Oifsel Addiessing Cyoee: o !
moda whanever T2 B (LER), Sa0 0 Cycln Artivity:
Sectlon 25.2.7 “Byte-Orlented and @l Q2 a3 21
Bit-Oricnted Instrections in Indexed Meende Ha Procoss Mo
Literal Ofrset KMode™ for detalle. Dp&rﬂ"ﬂﬂ Data l:lpéfﬂ'"l}l'l
Wi 1
Cycles: 1 Examgle: CLEWDT
(3 Cycle Activity: Bators Insmichon
o1 oz o3 od A T"JDT CIIZIIJI"ITET - ki
siruch
Dacods Head Procass VirTta i
regleter T Data reglater T WOT B a
o = 1
Caample. CTRT FLAS T, | ro 1
Betona Instruction
Mnas ROCG - Shk
After Instruction
FLAG REG - ODh
¥ D004 Misrochip Technelogy Inc. Preliminary DEALEATA puge 377

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

COMF Complement f CPFSEQ Compare fwith W, Skip if f=W
SyrRa COME O tidlan SyTTtER; CHERSELD flal
DPEIHI'IA'JE. Q « [255 IIlperauds-. Doz [2585
d = J01] = |01
a e [01] Operalion. (S
Caparahan; (T — dast whip if {f) = (il
I:IJFIBIFI'IE'I! I::I}I'I'IPEI'IEF:II'I_:I
Slalus Allected. N.Z Sintues Afincted- Mrine
Encading: ket | tias | bt | kit | Encoding: | 5113 | 4ola | Tttt | Tttt |
Mescripfian- The: confents of registor 'F are Lsscnphion: COMpanss the CoONSMTs of daka memony
Ml“ph&l“e‘m&ﬂ. IFd’ ls°1", the result s lacaton T b the cantants of W b:"
slored o W d w3, De resoll s prrforming mn unsigned subtmction
Soran back In TAQEIET T (DAtALR). I T = Vi, then the fetched Instruction &
INa" s 0, e Access Dunk is selecled. dimcarded and 3 sor is cecoubed
It'a 1 'L, the BSH 15 used 10 sslact tha nstead, making this & two-cyvels
SR bank (detault). inslrucdion.
' is 0" and the oxtendoed irstroction I3 1= 0 the Anoans Bank & solented
gt 2 ensbled, this netruction cperates 7" i 0, e ST i Lo Ly seles] e
in Indeacd | deml Offset Ar]-.1rﬁr.irg PR Rank [dl'_"fTIII"‘]
mamE WHAMSVArT L 5 (4PN, Ses If " I3 "2 and the extended Metuction
Seclion 365_2.3 “ByletDrienled sod E L .
st is cnahled, this instrsctinn operies
Bat-Dinented Instructions in Indexad In Indexed Literal Ofae P.ddr-ee:ahg
&l Dfset Mode™ fur detels. mude whuenever [85 {SMh). Sue
Wrhs: 1 Saction 25.2.3 “Byte-Onentad and
Cyules. i Bil-Orrienled Insdroe livaes in ebeed
Literal Offset Mode™ for details
3 Cycle ATtvity:
! o ty oo o 0 Wards: 1
i .
Decode Resd Mrocess | Wirheto Lkt e
| | regisier T | Craly desslirealion | Nole: 3 cyuohes i[td-l:'p arwd .rl:lll:mrd
by & Peward irstricticn
Q Cycle Acthity:
Caarnple. CMR RRO, &, 4
F o 02 o (14
Before IFEArLCTon Decod Read Frocess Mo
RLG = 13 register 'F M aperation
Afer Instrection |r9H'||:l'
RCE - 13h)
W = F{h oyl o e (14
Ida Mg Mg [1¥]
aperalica uperalion wperalion op=raliun
It skip and boliowed by 2-word mskruchon:
=3 o2 a3 o4
L] Mo Mo Mo
operstion | operation | operation | operation
Ma M Mn Hm
aperstion | operaion | operation | operstion
Exampla; HERE LDEFERY REEF, 0
HEZUAL H
[EILIN
Befone Inetructon
P Addrems = e
W = 7
RCG - 7
After Insfruction
T REG - WY
P - Address (TROTIAT.)
It KL = W
M - Addresa (MBQUAL}

DS30EITA puge 376 Preliminary

& 2004 Miciachip Technulogy Inc.

A-102

PIC18F2480/2580/4480/4580

CPFEGT Compare fwith W, Skip iff= W CPFSLT Compare fwith W, Skip if < W
SyntEs CPRSGL Thad Syt CPESLE Ba
Crerards. O=rx255 Oiprands. 0ol 285
e i) 3« |0.7]
Crperalivn. I:U !"-'"-":'. Oipralion. W,
rhg'r[ﬂ; (W e SkIp It (< (W)
(uneigned compartson) [urrsigried curmprrison)
Status Affertod: Mano
i - Jatus Atected: Hone
Encodng: | 211 | olom | trrr | trrr |)
Crsuding. | Gl | nnna BEREE FEEE
Lassmphon: Lompanss tha contents of data mesmory i
locatkan T 1o the conbents of the W by DEBmFﬂHIrI D{Il'l'l!.'ﬂrE."B- the contantz of data MM
prrfarming an msgned subimckon lomalion T Lo He conlenks of Wby
I the contents of T &re grester than the parieMmIng a0 unsgned subtrEcton.
comients nf WREG then e foiched Il e sounlenls of T are ess Han e
Instrucion 5 discardsd and a w5 sonbantz of V. fen i feichad
exeuuled imslead, imking lhis s hammm‘f Iaumm-e-d_and suoo e
hwn-cye Instructien. cancuted instoad, making thisa
M 1, Ui s Gk i selenled tt-cycle Inetnictian. _
159" i% 1" the BER is umed fn ssloot fhe If " is ", the &rcess Rank & soloctad
GIR bank (defaul). IF'a' 151", tha B5H 15 used to sakect the
If ‘2" is "0’ and the cxtended instrucfion GEF tank {dekull).
g2t bz enabled, thig Inetruction aperates Liiel 1
in Indexed Livral Oifoel Addiessing Cyclos: 147
moeda whsnewar T2 B (UFh). Sea = ovclea IFakin and follwed
Seclion 26.2.3 “Byle-Orienled and Note: o
Bit-Oricnted Instructions in Indexed by :
Literal Offset Mode™ for detalle. @ Cyche Activity:
Wibrds: i ug e i Wi
. Decode Fead Process Mo
Crycles: 2
Note: 7 eycles if siip and follnwed regescr Mata aperainn
by & 2-wsord Inetruction. IT akip:
0} Cyrle Activity- 53] {2 {RX] 4
w3l oz 23 o4 Mo Mo Mo Mo
[Ep—— = Procons Mo operalin operalion operalivn operaliva
regleter T Data gperathon It skap ard folowsd Dy Z-woend iInsmichon:
Il =kip. a1 az a3 04
2 s o a4 Mo] Mo Mo
M P Mo o operaliun operaliun operalivn operalivn
aperaton pparanan Dperatan pparann i [x] Mo g la] Mo
Il skip 2nd lollowed by 2 word inslrodion, wperaliun operaliun operalivn operaliva
2 s o a4
Mo M Mo Mo Crample. TR OPRSLT RRG, |
aperatinn nperation nperatian nperation L .
Ma M M M LEEE -
aperatinn cration cration nperation
" i e Batore InEmechon
Coarnpile. nEne CTFFRCT DR, 4O -,JP-,:'-: - Q““’EB‘B |FERE]
Hizslasilas Aitar Instmuston
CHEATER Il RCG = W
Batons Instructon P = Adrdroms (e
ro - Addresa (HEERE! If REG W
W - ' ! PC = Nddiess (MTERSE)
Afar instructen
IRCE x W
P = Address Jaascamioe)
TREG = W
BC = fudress (NORRATRR}

% 2004 Mistochip Technulogy Inc. PI'EIiI"I'IiI"IaI'y'

DS30E3TA page 379

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

DA Decimal Adjust W Register DECF Decrement f

Tyrkan. DA Syrilis, DCCT Tid fal]

Ciperanca: Hone Cperande: Dafs 255

Ciperation- i [=0= =) ar [5G = o] thon dr [0.1]

OEET] B WeE e ae |0l

mlue Operalivn. M1 el

(] — Wt Sistus Aflected: C, DC, M, OV.Z

I [i=7-d= =] ar [= 1] fhan Fronding: | IEIEIE! 111 11 | rrrr | rrrr |
(T 1 G o T Descrption: Diecrament regleter T 18 1a ", the
L= rosult & shored in W Fd =77 the
slza result ks etored beck In regleter 't
=T.dn] 2 WaT 4, (el

Hats Afaciad: o It"a' 1= "W, the Accass Bank 15 selscted.

Fﬂl:ﬂdrl[-l (B | oooo | A E{ B B] | irn | ||.'H i1, U DETE s wesed Lo sl e

PR pank (detzulk).

Deacriptian: DR f,djl'ﬁﬁlfth;:uhﬁ_ht "'ﬁ:_lj':_a In : 1M s 0 and Lhe exlended rslooclion
resLbing from i carier addfion of o gt 15 snakied, this Instruction oparates
warlsbles (each In packed SCD Tommat) In Indiesced Liberel Dffset Addressing
amd produces @ coned packed DED mnde whancwar § = #5 {SFh) fne
FESUE. Sectlon 25.2.3 "Byte-Orlented and

Wiurds. 1 Bil-Orriemnled Insiroclioons in hedexed

Cydee: 1 Literal Gitsel Mode™ har datails.

3 Cycle Activity Wibrds. 1
@t az @3 a4 Cyches 1
MNrcade R Praconss Wurite {1 Cyrle Actreity-
reglieter W Data w 1 oz 23 =3
Examale 1+ Mocndo Rrad Froress Wikite: ko
DRW reglater ‘T Data destination
Reofars Irstriscticn
'l.énl - ASh Examplea: CECF CHT, L, &
M = 0 Brioe Instruction
Afler Inatruction CHT - h
W = &k Z - a
L = 9 A Instruchion
Dc - D CHNT aoh
Example > 7 1
Bafare [ratruciion
W = CFR
L = 0
Dc - 0
Afier Instrisction
w - Zh
c - 1
N = 0
DS3LEITA puge 380 Preliminary & 2004 Misrochip Technulogy e

A-104

PIC18F2480/2580/4480/4580

DECFSZ Decrement f, Skip if O DCFSME Decrement f, Skip if not 0
Synlae. DCCrEZ 1id (=) Synlax, DCTEMZ 1{d [al}
Cperamds: 0iT= 255 Qp=randa; O=l2235
dr [21] o« [0,1]
EEUR]| a4« [01]
Cpseralivan. in 1 o del, Opralian. 1 »del,
SHp I rasut = SHIp It rasut = o
Slalus AMecled. Mome Salus Alfecled. e
Encodng: | ooLg | llda EEEE EEEE Emcading: | QLO0 | lld= | Ittt | 4 44 4 |
MNescrphinm Thr cpntents of register T ane Noscription: The contents of megister T ame
decremented. IT"d" e "2, e reeult le decremented. IF 0 1 "2, the result k2
phaced in WINd =01, Nl iesull s placesd im W d s 17, Lhe resull s
placa back In ragestar 't (okeau). placed Dath in reqistar ' (datsuit).
IT e el s 0", Lhe nesd inslroctivn Il sl s mol “in°, Lhe mexl
which s aiready teiched 15 discarad MEtnIchan whch 5 already 1eiched 15
and & HOT is eoecubed inslead, making disrarded and & HOT = easculed
it a fwn-cyclr mebuction n=iend, making it o two-cycle
I8 1s "2, the Access Bank e selected. netruction.
lia"is"1', the RER is used ta sckec the If 715", the: Accoss Bank is saleched
SR bank [default). e’ k2L, the BER lsueed 1o 2elect the
If 'a"is "o’ mnd fhe cxtended insfrucfion GFE bark {defaull).
sat 15 snabied. this Instnucton oparakas IF"a" 150" and the sddendsd Insrechon
in Indexed Livrsl Oifsel Addiessing el iy enabled, his imslroclion operales
moda whenayver T2 W (LFh). Sea n Indeed Litaral Oiftsat Addrassing
Sectlon 23.2.3 “Byte-Orlented and made whenever 2 23 (SFh). See
EBit-Oricnted Instructions in Indexed Soction 28.2.3 “Byte-Oriented and
Literal Oifset Mode™ for detalle. Elt-Oriented Instructions n Indexed
Wb i Literal Oflsed Mode™ o delsibs.
Cycles: 102 Wonde: 1
Note: 9 eychos if skip and followed Cyclos 147
by a Z-word Inatructicn. Moter 3 oycles [Maklp end followed
0} Cyrle Activity by a Poward insfruchion
w3l oz 23 o4 Q Cycle Activity:
Mecods Read Procoss Wit in o1 {2 i i
regleter 'r Cata degtination Decsde Fead Procesa virite ta
If skip- register Mada destinafion
o oz Q3 2 I Gip:
e Mo hia hia o b i 014
operation | operation | opereflion | operation Mo Mo Ho Mo
If skip and falkewed by Soward insfructian- operatinn | oparatian | oparaticn | oparadicn
o1 Qz 23 a4 IT akip and felowed by Z-word Instruction:
e Mo [Ma 53] {2 8X] 4
operation | operation | operefien | operation Mo Ha Ha Mo
[] Ha [wperalin operaliun operalivn operaliva
oparatan oparatn aparatien aperaton Mo Ha Mo Ha
operalin operalion operalivn operaliva
Exampis: HEEE DECFEE CH, 1, 1
T T.O0T: Exgmiple: EEEE DCPFEMZ TEMP, 1,
CONC 1 L FLEN KL
Deelone lislruclion . BZERD :
P = Addross (e Bafare: Instructinn
Afer Inatruction TEMT - 7
CMT = [CMT-1 fuller Irrslruclion
MCMl o = i | ERIF = IEMF-1,
PG - Address {CONTINUE It TEMT -
FGHT + i " = Address e
P = AMMeEs [HERE | 2} It I ERE = I
Mz - Addregg [WIZERC)
¥ D004 Misrochip Technelogy Inc. Preliminary DEALEATA page 351

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

GOTO Unconditional Branch
Syl GOTO K
Operands: 0 k= 1043573
Ciporatiom k= PL=Ar=
Status afected: Hiane
encadng:
Isl word [k<7.0=] g i o ikl | kkkk
andwordikeTg=) | PTI | RpkRR [RRRR] BRLR,
Deseriplion. LI alioves an uncondilion| Branch
arywhars within antirs
Z-Mbyte memary renge. The 20-bit
walue ¥ is lnaded imtn P20 =
GUTO e alwaya & hwo-cyce
inslrochion.
Whorda: 2
Gyrles >
@ Cyde Aclivily.
a1 Qaz Q% 4
Decude Reaad Bleral Mo Read eyl
k=T0=, npcrafian Ao g
Wirlte o PC
Hr Mo Ma M
cperation | operstion | operation | operstion
Eagrmples 20T0 THERE

Afict Instrictinn
Addregs (THERE]

rc -

INCF Increment f
Syrilax, IMCT T{d {a))
Operands: Dl 255
d r [2.1]
A= [01]
Operalivn. M*1 el
Slelus Aflected: C.OC, N,OV, Z
Fronding: | nn | milm rrrr | rrrr |
Ceacription: The cortenta of register T are
incremenbed d’ is o' the rosultis
placed In WL IT ' ks "2, Ehe result k2
placed back in regisles T (dulfaul).
IF-a" 15 "W, the Accass Bank 15 selcied.
M is "1, lhe OER e wesed o wlec] e
PR pank (detault).
1M ™ i 0" wnd e exlended rslooclion
z&1 15 anablad, this Instrection oparates
In Indenied Literal Offaet Sddressing
mnde whenewer < 4% (GFh) Sac
Sectlon 25.2.53 "Byte-Orlented and
Bil-Ovienled Insiroclivns in hdexed
Literal Oitset Mode™ tar gstalls.
Wiards. 1
Cwclea: 1
{1 Cyele Actrrity:
o1 Q2 3 21
Nocnds Rrad Pmcess Wikite fo
reglater 'r Data dectnation
Example: ¥erF cHT, L, @
Rrfore Insfruction
CHNT - [FFh
el - a
[= 7
oc - 7
Aftar Insfruction
GMI = 0oh
z - 1
[= 1
3 = 1

DS3063TA page 362

Preliminary

& 2004 Miciachip Technulogy Inc.

A-106

PIC18F2480/2580/4480/4580

INCFSZ Increment f, Skip if O IMFSNZ Increment f, Skip if not O
Synila. INCTSZ [{d {al] Syrikzs, INFSRE T [[2]]
Cperands: Dsl=255 Uparands: itz
d - [0] o o [0,1]
ae 1] a« |07]
Crraliva. (41 e, Operelion. [E_" r1r ’ “'j'fL
S It FaSAlt = ¢ FHIp eSO
Sl Alfecled. Mo Salus Alfecled. Heune
Encading: olon 1103 I [l
Encodrg: | Ball | 1lda | trit | trfr | . I'!:I | | - !
o - Deuczipliun. The corlenls ol negisder T ure
MNescrphinm Thr cpntents of register T ane nerementad. ['d & o, tha resul 15
Incramentad. IF°d" g, the result F"EI}I’.‘d In W IE°d I L, the result k&
[.IHEIJ in WL i1, e resull i |'J|.'!|fl'1d Rk in rngim::r - [dl:ﬁ!ll"l‘}
Placa0l back I regestar T {dstaun). I e FesUt 18 Rt o fhe nest
IT Lhvee peeesull i ', Dhe e imslroslion nnructinn which is already feiched is
which i araady 18ichsd 15 discarssd discardad and 3 HeE B ewscuhed
f""':' AT '?m':“l'!_d irmslemad, mreaking nsbead, misking il 2 oo cycle
it a fwn-cyclr mebuction nstnchan.
I’ ks 'e’, the Accesa Bank |s aelected. I 0, Il Arrss Bunk s sebeched,
Wa"is"1", the RER is used fo seloct the Fa'is' s, the BAR is usad o soloct the
SMR bank (defaul). GPR bank (default),
If 'a"is "o’ and the cxtonded insfnicfion IFa'is i and the oxtendad instrsctinn
54l 5 anabied, Mis NsnEhon aparstes 2et |g enabled, this Instruction operates
in Indexed Livrsl Oifsel Addiessing i1 Idesed Lileral Offsel Addressing
Mods WiEnever 2 Wy (LR, Ses mde whanaver b2 3 iskh). See
Sectlon 25.2.3 "ﬂ]’t’l‘.‘-ﬂﬂ&ﬂt&d and Seclion 26.2.3 "Bﬂ!-ﬂl‘iﬂlllﬂd and
Bit-Oricnted Instrections in Indexed Eit-Oricnted nsfructions in Indexed
Literal Difset Mode™ for detalle. Litesal Offset Mode™ for detals.
Wihrds 1 Wiande: 1
Cycies: 12 Cyolee: 142
Mote: 3 cycles if ship and followed Motr: Scycles ifskip and fallowed
oy & Z-wiond Insetruction. by & 2-word Inetruchon.
0} Coypele Activity- O3 Cycle Artivity:
a1 o2 @3 24 a1 az a3 o4
Nacads Read Procoss Whkie 1 Uecoda Head Frocess ViTte ba
regleter T Cata destination ragisier T Data deatination
If =kip- If =kipr
21 o2 o3 24 Qi Q2 Q3 a4
Ha M M Mr [+ Mi M Mo
operation sgeration speration wperathon operathn aperatian operation operaticn
If skip and falkvwed by 2oward insfruction I =kip and felmwed by Powned instroction
21 oz o3 24 Q1 Q2 Q3 o4
Mo M M Mr Me e Hei M
aperation speration cperatian Gperation operatkan aperatian aperatlon aperation
[[+ M M Mo Hin Ha Hin
aperaton pparanan Dperatan pparann opsraten aparatnn apsratien apEration
Exampis: HEEE LHCFSE [. Y S B 1] Exampe; EEEE LHF=EHE EES3, 1, ©
HZEAC ZERD
raa e EANES]
BeTona Instruction Before Ineructon
=l = Addrenn (e P - Addiess (TTRET)
Amar Instruction Aftar Instnicton
CHT - CHT+1 RCG - ROG+1
HCNT = i FRFG + O
rc - Addregs {IERC) [= Address (MR
TCMNT - 1 IMECG - 0,
P = Addross (s PG = BAddross o)

W 2004 Misiochip Tedhnology Inc.

Preliminary

DS30E3TA page 363

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

IoRLW Inclusive OR Literal with W IORWF Inclusive QR W with f
Sy IORLYW k Syrilz, IORWE T [[a]]
Operands; Jskz255 Operands: Dsfs255
Oiperatinn A OR =W dr [0.1]
a e [01]
Statue AMacied: N, Z
' Opuralion. (WO (N o e
Encodng: BRRE | 1001 | kkkk | kkkk | S : NZ
Deseriplion. Thee conlenls of W ame ORed will lhe Erending: — — p— P
BIgt-hit Iteral K. | h& rasult 5 paced neming [oose | woan | | |
I W, Ceacription: Inclushe OR W wRkh reglater T. IF°d° 1&

‘o', the resalt is placed in W F'd'is "1,

Woros: 1
the result Iz placed back In regleter T
Cycles. 1 (el
2 Gyl Actviby: It-a’ 1= v, the Accass Bank 1z sokcted.
i o 1% 04 ||'-‘-!I' is 1, e SN i wsed Lo wele] Lhe
Decode Resd Procesa | Wirte to W PR pank (datault. _ _
lileral & D s 1" i 0" and e esdended erslroclion
£a81 15 anated, this Instruction oparates
In Indewed Literal Offzet Addreesing
Examale: 1EIKT 1= minde whanewer § < 85 (SFh) Soc
Balore Inretructicn Sectlon 25.2.53 "Byte-Orlented and
W = OAk Bil-Orriemnled Insiroclioons in hedexed
After Instmecthon Literal Qrset Moda™ tar dstalls.
w = Ok Wards, 1
Cyclea: 1
{1 Cycle Actrrity-
1 [13 21
Mocods Rrad Process Wikite fa
reglater ‘T Data desdination
Examplea: LOEMF FEESOULT, ©, 1
Brinm Insfruction
RESULT - 13h
Lyl - 9ih
Aftar Instruchion
RCSULT — 13k
W = ih
DS30EITA puge 384 Preliminary & 2004 Misrochip Technulogy e

A-108

PIC18F2480/2580/4480/4580

LFSR Load FSR MOVE Mowve f
HET LrsR Lk Syrilua. MOVT T [[a])
Cperands: 0=Ts2 Qp=rands:; D=fls 255
0k = 4095 dor [0.1]
Cperation: k :FSRT =07l
Stodus Afechod- Mane Opralian. [v ddud
Encodng: 1110 | 1113 | g@zr | keekkk Satue Aflecied: M.Z
miaa | kR RR Lk Fronding: | oin | L4 rrrr rrrr
Description: The 12-51t Breral ¥ 12 loaded Nt the Deacription: Tie contents af reglater T are moved o
file soloct rogister poinded o by T a destination dependent upon the
. ateta of 'd T b2 "0, e reeul e
WarEs: Z !
placesd im W d s 17, Lhe resull s
Cynies: Z placed Dath in reqistar ' (datsuit).
O Cycle Aclivily. Localion T can be amyadme in e
i w2 o) 4 Zu5-tnita bank _
Decote | Read fileral | Prooess Wil Wi o, e Mo Bk o sl cled.
o SE Lt itsral 'k Ifa'is'e’, tho BSR is used o sciect the
MED Lo GMR Lank {default).
FERFH If ‘2" is 1" and the cwfended instrsctinn
Decode | Resdlersl | Procese | Wirie inersl 2et Ie enabled thia Inatructin operates
| SR . & b PR i Idexed Lileal OMfsel Addessing
mde whanawar [2 3 (bhh). Ses
Seclion 2623 “"Byle-Orienled and
Fxampie- U IH TS ¥ YT 1 Bit-Ornecnted nstructions m Indexed
Afler Irelrucdion Literal OfTsed Mode™ Tor detalis.
FSR™H = O%h Whords 1
5 -
FERZL AEh oy ;
L Cycka Achwny:
a1 a2z Q3 04
Llacede Haad Frogess Wimka W
regisler T Drala
Cxaniple. MR R, &, o
Estore Insmechon
RLCG Z2h
W = FFh
After Ingtniction
RFG = *h
w = Zh

% 2004 Mistochip Technulogy Inc. PI'EIiI"I'IiI"IaI'y'

DS3053TA page 365

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

MOVFF Move fto f
Syl MOVIT .1,
Operands: 0=l <4085
Qo 4053
Operation: i o1y
Hatus Affocfod- Hiona
Encoding:
1=t ward {saunne) NN Frrr rrrr Frrt,,
2l viard [destin.) 1111 =t {8 f 8 trrl,

Leccnphon:

Wons:

Cycles:

2 Cycle Activity:
01

Desade

| & conkamts of Sourca reqiskar ‘1, ane
moved to destingtion regiater 147

| neation of saunoe)" can be anywheno
In the A086-kyte dels apace (0000 1o
T M) =and localion wf destinslivn T
can aksn Do anywhars o QO0n o
M

efthar source of destinaton can bs W
(e sl special silualion).

HOWET 15 parcalary ussbul bar
tranafering a data memary lecathon s a
peniphoral registar (sech as the fransmit
pufer or an KO port).

The rwe vy instruction cannat 1= the
PLL, 1650, 108EH or 1250 35 the
deslimmlion regisler

2

EREH

oz s 014
Fead Mracess M
rogistar T Mafa nperafian

[]

Decude

Mo Mo
oparaten oparation
Mo durnrny

read

Wiile
reqsier
R

eamepe

LRIV EEFIL, HESZ

Before [esdruslion

HEGH
REZZ

+3n
11h

Aficr Instrsctinn

REG1
RCGZ

23h
= 33h

MOVLE Maowe Literal to Low Mibble in BSR
Syrilax, MOWLW &
Operands: Dk 255
{Iperadinn: k —= RSR
Slalus Aflected: Mne
Encoaing: vove | voor | o | maa |
Desriplivan. Thee wighl Bl Bleral % s louded inlo e
Hank Salact Hagistar (BEH). 1he valua
of BIR=T A= always remaing "',
regardiess of tho valee of krky
WVards 1
Lyclas: 1
@ Cyule Acliily.
1 [13 24
Do oo [Read Process Werile lileal
Ineral 'k Uata o BSR
Erampls; M LE £l
Rrime Insfruction
ESH Hagistar = 02N
Aler nsboclion
B5H Hagistar = A

DS3063TA page 356

Preliminary

& 2004 Miciachip Technulogy Inc.

A-110

PIC18F2480/2580/4480/4580

oUW Mowe Literal to W MOWVINF Mowe W to f
Synlax. MOWVLW & Synlux, MOWVWT T[]
Operands: D= k=255 Operanis; 0=Ts 255
Operatinn: k=W LR
Stets AMected: MNome Operation: W et
Encomng: | nana | 1110 | RkkR | RikE | Fatus Afacied Mans
Desoriglion. Thoe wighl kil ileral %' is lesded inlo W, Encading: e | 111a | eeer | eeee |
Wonds: 1 Liascniption: Moy data traem W 1o rsgistar 't
' Locathan T can be anywhens In the
Cycles: i 25byte bank
S Cycle Activiy: T’ kg o', the Acoess Bank ke eslected.
oy [uie] i n4 F'a'is"1" the BER & i=mad to soloct the
Decade Read Frocess | Vitke fo W G bank 9ok). _ _
ool 'k Miada N i 0" and L exlended irslnoeclion
53t 15 enabiad, this mstruchon eperatas
in Irdesoed Lileral OiTsel Addressing
Fxampla: M seh moss whanayer bz B LR, Ses
Al Ire=trucdion Sectlon 25.2.7 “Byte-Orlented and
W = Sih Bit-Oriented Instructions in Indexed
Literal Offget Mode™ for detslls.
Whonds 1
Cyckee: 1
0 Cwcha Achwity:
ot oz o3 Qd
Decodae Haad Procass Wirtte
regleter'T Data reglater '
Cuanple. MOATAT R,
Eators Insmichon
W - dlh
RFG = FFh
After Inebructicn
w drh
RED = 4Fh

W 2004 Misiochip Tedhnology Inc.

Preliminary

DS30E3TA page 367

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

MULLW Multiply Litcral with W
Svnia MULLW K
Ciperands. Ok« 253
Ciparation: W) & k= PRIHFRODL
Sahis Affccted HNrne
Encoding: | alalels} | 1141 | i | R |
Mescripfion: &n unsigned multipfcation is carricd
Gt between the cortents of W and the
fi-hit literal &' The: 16-hit result is
placad i tha PRODH FROOL registar
peir. FIOD0I | conlains Lhe high byle.
W is unchangsad.
Mune of Hie walus Tags ane alleched.
MNeta that rether avariow nor camy Is
pussiide i this operalion. A oere resull
i prssible bt naf detocied
Wurds, 1
Cyclas: 1
@ Cyde Aulivily.
21 Q2 Q3 Q4
Mecods Read Pracoss Wit
Iaral &' Lhata raqistars
PRODIL
FHRODL
Examele; UL T N1
Delore mdruclion
w = E2n
PRODH - 7
PRODL - 7
AT Instruction
W - LCZh
RPROMH = Afhh
FRODL = 08h

MULWF Multiply W with T
Syt MIULWE tial
Operands. Qe 235
a=01]
Operalion. M u(y » PRODILPRODL
Hatus Attested: HanE
Frizrding- | HHEH| | [HENP rrrr | rrrr |
Descrption: An unaigred muliplicatien la camled
aut beteaen the crntents of Wand the
ragister ks acshon 1. 1ha T46-hn
tesull is wored in lhe PRODILPRODL
reqister parr. FRODH contains the
igh Lyte. Both Wand T are
unrhanged
Mone of the etetua fiage are affecied.
Mate that neithar averfiew nor carry is
poealble In e operatlon. A 2ens
rersull is possible bul nel delecled.
IFa" 1507, the ACcass Bank 15
sulecled, N2 w00, e DR i~ used
o zalact the GPR hank {detzuit).
IMa i 0" and lhe sulended
nshruchinn 5ot is enabled | this
netniction egperates In Indexed Lieral
{iffrct ddrossing mnde whonower
T2 5 (bFhl. S98 Saction 25.4.3
"ByleOrienled sod Bil-Orienled
Instructions in Indexed Litaral Oftsed
Tt for detals.
ands: 1
Cyules. 1
L Cycle Actimy:
i) [y 4
Decode Resad Frocess Whirite
regisler T Dl Iepgiders
PRODH:
PRODL
Cuammple, MINTHF R, |
Betons Instruchon
W - Cdh
RFG = REh
PRODH = 7
FRODL - 7
After Insfruchion
W - &4h
RLCG - B5h
FPROUH = BAh
MRODL - Bih

DS3063TA page 356

Preliminary

& 2004 Miciachip Technulogy Inc.

A-112

PIC18F2480/2580/4480/4580

MEGF Negate NOP Mo Operation
Synlax. HEGE i) Synlux, MOP
Operande: D=lT<255 Qparanda; Mone
ur 0] Clporation Mo oporafion
Operation: {(The1 ot Status Aflected: None
St Affected: N, OV € D, 7 Encading: puon | wwuw | ooon | oooo
Encodng: | 21ld | 11tz | Tttt | rez: 1111 | mooc | e | xeex
Lassmphon: Location 't 5 negalad Using wo's Lsascnplion: MO oparaton.
complernent. The resuft 18 placed Imthe Wionds i
data memaory Incation T
e’ ke '0, the Access Bank ks selected. ez 1
If'a" i "1 the BRER is umed o seloct the {1 Cycle Achivity:
PR bank (daiault). 21 oz 23 [
1M i 0" = U enlunded imslroclion [He [Me
Fal 15 anabla, this insmichon oparatas speratian operation aperation
i e Lilesal Ozl Addressing
macde whansvar f 2B (BHR). Ses
Secthon 25.2.3 “Byte-Driented and Sxpmple;
Bit-Oriented Instructions in Indexed Moo
Literal Offset Mode™ for detals.
Wihrds: i
Cycles: i
3 Cycle Activiy:
a1 az Q4
Lo Read Wit
regater T reglater T
Cammipile. HRCF T,

Betona Instructen

RCG - aall rale [SAH]

After Instruction
REZ -

1144 4114 [CBh]

W 2004 Misiochip Tedhnology Inc.

Preliminary

DS3053TA page 365

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

POP Pop Top of Return Stack PUSH Push Top of Return Stack
Synlan. POP Syrilax, PUSI
Qperands: Hane Operands: Mone
Ciporatiom (T(ES) — hit buickot {lprradion- (PG + ¥ = TS
Stabue Afeched: Hane Status Affected: e
encadng: Gy | =]=1=1x] | ik k] | 0114 | Encoading: 00404 G | Gy | FLOL |
Deseriplion. The TOS walue is pulled off The relum Desriplivan. The PC + 2 5 pushied anbo Lhe lop of
stack and 15 discarmad. [he 1005 valus the rsburm sEck. | b prewiLs 105
Ehem becomes the previous walue that value l& puahed dawm on the atack.
wias pushed onka fhe return stack This instruction nllaws implementing a
Thie Ingtruction ke provided to enalble goftware atack by modifylng TOS and
the uscr o praparly manage the rechurn then pushing i andn the rehurn skeck
sack b incorperate A sofwars stack. Viards 1
el ! Lyckis: 1
Cyciee: 1 0 Cyuhe Ackely.
o Cycla Aoty (%3 [(W] 24
a az R a4 Do PUZII Mo M
Lecode Mo [e Mo Fi+Zento | opergton apergbon
operation wvalue opsration redum siack
Suaimgle: iy Example; fugnfod]
L R Acfore Insfnuction
Befare [netrisction TOS - F5ah
TOS - DIS1AZh BC - D24k
Hack i1 lval down) = D04Eh
After Imetnuction
Aficr Instrsctinn P = iMAh
105 = D4n | 6% = U
P - MDOW Sack {1 level gown) - Z5ah
DS3LEITA puge 390 Preliminary & 2004 Misrochip Technulogy e

A-114

PIC18F2480/2580/4480/4580

RCALL Relative Call RESET Reset

Synlax. RCALL n Synlux, RECSCT

Operands: 1024 = n= 1023 Qparanda; Mane

Operation: (Pl + 27— TONS, Clporation Riosct all regisfers and flags that anc
(FClv202n -PC affected by a MCLR Resel

Sttus Affechod- MNono Satus Afincicd- &ll

Encodng: | 1141 | innno | nono | nonn | Encading: | D000 | ppoe | 1111 | 1111

Lassmphon: Subroutng call wWikh a pump up 1o 1K Lsascnplion: Inis mebruchnn provicdss 8 way o
fram the cumant locatian. First, return exacite a MCLRE Reast Im aofware.
address (PG + 7)) s pushed oo the Vo= 1
ehack. Then, add the Z'e complement
nuenkser 21 Lu e PC. Sinoe lie PC il Ty, 1
haws meremantad 1 et he nex 0 Gyeda Achyity:
imslrosslion, Ihe meve sddress vill be

1 2 i 4
PL o+ 2+ 2n. IR instnuchon i a 0 fl fl rt
bwa-cycle Iratruction, Decode Start N Mo
Rl operalivn operalivn

Wards: 1

Cycles. 2 Frapmiple: RIS

L Lyl ActvRy: AT Inetruction

@1 oz Q3 Qa4 Registors = Rieset YWalue
Uecods | Hesdlteral | Procsss | Winhe to PO Flags™ = Hessl Valus
o' Dby
FUSH PL o
slack
Mo Mo Mo Mo
operation | operstien | operstion | operstion
Cammipile. g joses TCRTT, Juimp

Betona Instructen

FC - fudikess (TTFETD
After Instruction

PC - Address [JTamo!

TOS - Addiess (TTRER + 2)

W 2004 Misiochip Tedhnology Inc.

Preliminary

DS3A0E3TA page 301

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

RETFIE Return from Interrupt RETLW Return Literal to W
Synlan. RLCTTIC =} Syl RCTLW R
Operanda: g [01] Operande: D= 285
Ciporatiom (TOES) = PG, {lprradion- k=W
1 » EENGIEH or FEIENGIEL [TOE) »I'C,
iTs=1 FCLATU, PCLATI | are unchumged
W5 — W ;
(STATUSS] + Slalus, Hatus Affected: flone
(BERS) = RSR, Fronding: | IEIEIE! 11 1nIE | LEEk | EERE |
MCLATU, PCLATH are unchanged. Descrption: VW 1 Tasded With the elght-lt IRersl %'
Status Afcciod: GIF/GIFH, PEIF/GIE] The: pragram caunéer is Inaded fam the
Cocath o — — 0 top of the etack The retum addresa).
g R | i | faal | A | Thee high address klch PCLATI
Lescnpin: Hatum from Intemupt. Stack 15 popped ramains unchangesd.
amd Top of Skok (TOS) i louded nlo Warels i
the P, Infsmupts ara enabisd by '
zetiing efiher the high ar low priorky Cycles: z
glekal inferrapt conble b F's"= o the 0] Cycle Acfhrity-
contenta of the ehadow reglebers, WS,
STATUSS and BERS, are koded inly o1 B2 a3 il
thEIr COMBERONANG reqistars, W, Recns R"‘":I' Proress PLP P
Slalus ard BER. (7% — 0, no updale of Ineral 'k Data Trodin 2tack.
these regishers necurs (defaulf) Uhibe: £ WA
Wi, 1 ha faa. e s
operalion uperalion wperalion wperalion
Gyohas: 2
2 Cyde Aulivily. Fxampla-
a1 a2 o 14 CALL TAELE : ¥ contadns tabls
Devude Mo Mo FOF PG ;o offact valuc
oparaten oparation from stack ;W omwow b
Sl EICH or s Tabk e wa lae
GlEL :
U] Mo Mo Mo TRELE .
cratian mparafion npcrafian nperatian P PH el
i EELL KU s Herpin Labrle
TRETTH ki :
eamlec FELFLE 1
Al Inlerrupl .
B = e KEETI& R FR=TTH B TY i) Hy P
w - WE Before Instruction
OSR - [BERS W - O07h
Halus = SlAIUSS
GIEIGIEH, FEIE/GIEL - 1 Alter Instnuction
W = wdlee olkn

DS30EITA puge 392 Preliminary

& 2004 Miciachip Technulogy Inc.

A-116

PIC18F2480/2580/4480/4580

RETURM Retum from Subroutine RLCF Rotate Left f through Carry
Synlax. ECTURM {x) Synlux, ELCT T[d [A])
Cperande: ac 0] Operanda: 0=z 235
Operatinn: (T8 = PG, d e [0u]
Pe-1 ECRLUAN
WS W Opralian. {f=n=>} » deslon & 1=,
(51815 — Satus, (Bei=h =1,
[BSRS) - DSE, (5] - deulads
PGl ATLL PCIATH ane unchanged Sratus ARacted: O£
Slelus Alecled. Bone Crcuding. sorr | nian | sees | e |
Encomng: | vose | ovoo | wsor | wiae Descrption: The contents of regleter T are rotated
Doassezrigalivn. Relurn lreen subrouline, The sbsck = o bil b lhe kil Broagh e Carry
popped and tha wop of the stack | 105) flag. Itd' s, tha sl 15 placed in
s kuaded inle Ihe program cownler. 17 WL s 717, e resull s slored Brsck
5= 1, the contants of the shadow In reqistar 't (datault).
registers, W3, STATUSS and BSRE, M i, I Access Dank i
are: leadad indn their carespanding solected IF'a’is" 1" the BAR is used ta
regisiena, W, Staiuz end BER. 1T gelect the GIR bank (defaul).
"~ 0, no updalee of these iegislers F'a" s 1" and the exhended insfrucfion
QCGUTS {retuIt). set Iz enabied, tis Ingtruction
Wi, 1 operaley in Indewed Lileral Offsel
. Badrassing moda whsrsvar
byl . z I[85 [3Mh). Ses Seclion 26.2.3
0} Cycle Activity “Byte-Oricnted and BitOricnted
= [o3 a4 Instructions In indexed Literal Offset
Necnads [Prcoss | POF PG Minde" for details
e ratan Ceata From &tachl o= regkater f |.._
K Mm Ma M |
aperahon oparahan oparatan paraton Winirde: q
Cyhus, 1
£ . 0 Cycka Aty
AAMpe” MECTLIRN
@ az Q3 o4
Amer L"rt*"f'!}{nﬁ Decods Kaan Process | Wi to
T 1epgisler T DOt deslinalion
Cxanple. i s ol RTET, &, O
Eators Insnichon
REG - g alla
. = 0
After Ineructicn
RFG = [NREIREIRRE
w = 1199 1199
c - 1

W 2004 Misiochip Tedhnology Inc.

Preliminary

DS3053TA page 303

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

RLNCF Rotate Left f (Mo Carry)
Syl RLMCE T{d {a)]
Operands: D=l=2535
d r [3.1]
3= |I1]
Operalion. [F=n=] 3 dusdegn+ 1=,
[P i] — pagtae
Slalug Alecled. M, Z
Encoding: | Lk | alza Ittt EEEE
Mescripfion- Ther comtenits. of regisier T e rotaded
cne bitbo the left. IT'd ks "0, the result
s placed inWIFd iz 10, e resull is
sharad DaCK 1N reqistar T detault).
IMa" 0", M fussess Dank i selecled,
It&' 15 "1, the B3R 15 Lisad to selact the
GPR bunk (defsull).
It"a" 1= ‘o’ and the axtended insmichon
2el k2 enabled, this Instruction apenstes
in Indewed | iteral Ofsct Addrassing
mode whenewver T 523 (SFh). See
Seclion 26.2.3 "Byle-Orienled and
Eit-Onented Instruciions in Indaxed
Lileral OTsel Mode™ [m delaiks.
~g— raqishar |-ﬂ |
s 1
Cydes. 1
2 Cycla Activrby:
i [eiy =] (14
Decade Read Mracess Wirlte to
regisler T Craly deslirmlion
Dcurnple. RTHCR WRGL 1.0
Befare Imatruction
REG - ala 1o
Afer Instruction
RO - LT

RRCF Rotate Right f throwgh Canmy
Syrilax, ERCC T{d{.a]]
Operands: Dl 255
d r [2.1]
A= [01]
Operalivn. [F=n>] »dudan 1>,
[Pl — G,
[C} » desl=¥>
Salus Aftectad: [
ErltHJdil'lg. aall L1 B | Tt | Tt |
D'EECHPHD-I'IZ The Comtenta of I'El;l&'h‘.‘r T are roteted
vane bl Lo Ll righl lhoaugh e Cany
Hag. I s U, thed result 15 plaosd 1In .
I i "1, L resull s plyced back: in
ragistar 't {detault).
I’ iss 0", lhe Acoeses Denk is w=lecled.
Ifa"is "1’ the ARR & 1med to solect the
=R bank {[default).
If 'a"i= 'i" and the eviended nshuchion
et g enabled, thia Inetnsction IIIFIEI"ETEE
in Indexed Lileral Offsel Addiessing
moda whanewar T < ¥ (akhj). a8
Seclion 26.2.3 "Byle-Orienled and
Bit-Omicnted Instrsctions in ndexed
Literal Offset Mode™ for detalla.
o] regeerr e
Wiords, 1
Lyclas: 1
Q Cyule Acliily.
1 (2 (13 24
D oot [Read Process Wkile L
raqistar 't st fasinalen
Exampls: 44 BEF, 2, 2
Brfnre Instruction
REDG = 1110 uilin
[- a
After Insfruckion
REG - 1114 #11#
W - nitl nnll
[= 0

DS3063TA page 304

Preliminary

& 2004 Miciachip Technulogy Inc.

A-118

PIC18F2480/2580/4480/4580

RENCF Rotate Right f (Mo Carry) SETF Setf
SynbE: RRMCF T{d{a}} Syritax: SETF f{a}
Cperands: 0zt Dparands: Ol s Ml
de [31] a1
m =[] Cpsraten: FHR —1
Cperation: (Peri] o desten — 1o, Slalus Allaclud. Huris
(F=0=) = drst=zT=
AMectad: M T Encading: | QL1 | Ly LLLL LLLL
Noscription: The confenfs of the speaificd mogisher
Enconng: | vivw | eoas | cec | ocece | & areamttn bn TR
Dasezripalion. The cenlents of regisler T ae iwolabed IMa i o, Il Access Dok s selecled.
OrE DI tha nane. it a5 "o, the resut It'a' 181", the BiH 15 used fo salsct the
I placad In W ITd 1L, the result ks GPR bank {defaull).
placed back in register F {dafuk) It"a' 151" and the sxtendsd nstrsshon
I1'a" ke "2, the Access Bank wil be 28t & erabled, this Instruction operates
soleciod, avernding the BSR value Ha' in Indewrd | el Offsct Addrossing
151", then the bank will e salected as made whenaver f <55 |:5F|'|] Sep
per b DR varhoe (v kaull). Seclion 26.2.3 "Byle-Orienled and
I3 15 "' and the extarded nstrucion Eit-Dnented Instructions m Indaxed
w2l it wmabled, his insloslion aperales Lileral OiTsel Mode™ o delaiks.
in Indexed | #gnmil Offset Addrossing .
mode whenewer T< 85 [5Fh). See Viards: !
Secfion 28.2.3 “Byte-Oricnted and Cyules. 1
Et-Omentad Instructiens in Indexed O Cycde Activity:
Lileral Olfsel Mode" for delails. o o2 03 14
|—l-| regiter f I—"' Decode Fead Procesa Wirie
regisler T Drala regisler T
Winrs: 1
Cyules, i Fxnmiple- (Y Wlis, |
O Cycle Activiy: Before Instructon
o o : Q4 RF&G = Sdh
Decode Read Process | Wi to e,
regishor 'F Mata drestination !
Examplz 1 LT s, 1, o
Befone Ingtruction
RFG = I wn
Afar Instructin
RCE - Pl Tall
Cxumiple 2 BENCTE R, O, 0
Bietons Instructnn
W - 7
RFG = (NI
Aler Instructian
W - Ll Tl
HEL: = llirl #lll

¥ D004 Misrochip Technelogy Inc. Preliminary DEALEATA puge 395

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

SLEEP Enter Sleep mode
Syl SLCCP
Ciperanis; N
Ciporation- ih — WIT,
0 WOT peatecaler,
1 :10,
0 —FLD
Slalus Alucled, T4, FO
Encoding: RIRIET | RRTET] | 1
Mescripfion- The Powrr-Nown shatus bit {ﬁ; in
cleared. The Time-cut gletus BR{TO)
i e, Witslchuoy Tener and ils
postscaler are claared.
The mocesan is pul inle Sleep imode
With the ascllator stopped.
Wy, 1
Cyclas: 1
3 Cycle Activity
@ 22 Q3 24
MNeonde Mo Pracoss Gnto
oparatinn Lata Skap
Esarmgle: ELEEF
Rofare Insiraction
T - 7
PO - 7
Adter Instrustion
o1
F = 0

f IFWOT coumes wako-up, this b is closned

SUBFWE Subtract f from W with Borrow
Syrilax, SUBPWE 1 [a]]
Operands: D=T= 235
dr [3.1]
A= 0]
Operalion, (A gn Ty el
Slelus Aflected: M, O, C,0C.E
Fronding: | 1B 1L | 111 rrrr rrrr
Deacription: Subtract reglater ' and Camy Nag
{hornow] from W {*'s complement
methodp. I'd’ &'z, te reeull ks atored
i WA I s 0, Dl resull s woresd in
raqistar ' {detault).
Iia’ i 0, Hie Aoess Dank is w=leced.
It ‘& 15 "L, tha BSH 15 Usad 10 salkecd the
EIR bank [defsult).
I¥'a" in "o’ and the esdended insfructinn
el bz erabled, thie Instruction operates
in Indraed | iheral Offsct Addressing
mieda whenevar 12 #a [Fhl. Ses
Seclivn 26.2.3 "Byle-Orienled wnwd
Eit-Dnantad Instructions m indsxed
Literal Offaat Made™ for detals.
WVands: 1
Cyulus, 1
L Gyl Aty
1 o2 03 od
Lacoma Head Frocass Wiha o
regisler T Dhales e ccliimzal i
Fxamplo 1 LHLIFRI s, 1, o
Rrfme Insfructan
HED = 3
W - 2
G = 1
Afber Imefnuction
RLCG - T
W = 2
[- 2
z - a
M = 1 T el 1B neqalive
Exampls - EUBFNE HEd, @, @
Rrfme Insfructan
REG - 2
W - 5
[= 1
Afber Imefnuction
REG = 2
W = 3
[- 1
7 = 0
M = i} T FeUlt 15 posknee
Exampls 3 EUBFNE HEd, 1, @
Beioma Instruchan
RLCG - 1
W = 2
[- 2
A hiedioclion
HED = 1
W - 2
[= 1
£ = 1 T FESUlt | ey
M - a

DS30637A page 306

Preliminary

& 2004 Miciachip Technulogy Inc.

A-120

PIC18F2480/2580/4480/4580

SUBLWY Subtract W from Literal SUBWF Subtract W from f
Synlax. SUDLW K Synlux, SUGWT [[a])
Cperande: Dok= 255 Operanda: 0=l 255
Operatinn: b — (W) = W d e [0.1]
a4+« |0.1]
Statta Afeched: N, oW C, DG, £ .
| Opralion. M W oo
Encoang: =]=1=1x] 1000 ekl LA
. il | s | Statug Aflected: M, OV, C. D0, Z
Dergezripalion. Wi subilracled o Lhe eighl bl Fronding: - . .
I&ral k. 1he TELI 15 placed In W reAding KX | P | |
Vb, . Deacrption: Subiract VW Trom reglater T (T
complement mothed) Fd' is 07, the
Cynies! 1 result Is stored In WL T 1211, the
0} Cycle Activity- resull is slored back in regiber T
a1 az a3 a4 (default).
- 1M s 0, L Avcsegs Dank is seleched.
Mocods Read Pracoss | Wlirite dn W
= et o " I8’ 151, e B5H 15 1590 10 sect e
BFR bank [defaul).
Fxampls 1- EHAT TN I | If'a' = "1 and the coiendod nshuction
5 2ot s enabled, thia netnuction aperstea
Deelone bl ruch
T i Indsed | fieral (et Addressing
C - 7 meadla wihenevar [z e (L), Sea
Al Ireslrucdjon Seclion 26.2.3 “Byle-Orienled and
W = h Bit-Onented Instructions in indaxad
[- 1 » resUl |& posltie Literal Offset Mode™ for detalls.
7 = 0
M = 0 Wiords: 1
Coarmple 2 SIMTH A2h Cyules. 1
Befune Instruction & Lcls Actity:
W = 0Zh a1 a2 a5 O
L = ¥
ARer Instructian | Hecoas rEa | Frocess | Vil to
W — tegisher T [NERES deslinalion
% z 1 - rasuk = 2erg Sugmnple 1: EUEWF EBZ, 1, ¢
H = 0 Binfare: Instructinn
Exarpie & sumIx 11n pEa= g
Bators Instructkn t = 7
w - o3h After Ineructon
¥ = ¥ RCG - 1
Aftar Instrucien i = ¢
[- 1 s result B poeitive
i = Th, (2 sumplermenl) z - 0
G = 0 ;resultis negative M = 0
z - 0
i - 1 Cxanple 2. SINAR BT, O, O
Eabore Insmichon
REG - 2
Ly =
G = 7
Auller Irrsloaclion
RFG = 2
w - 0
C - 1 syl s sero
7 = 1
M - 0
Frample 5 LY Kt 1, It
Bafare Inetructon
RCG - 1
w =
c - 7
After Instuctinn
RED = FFh (2% compleamant)
W - 2
¥ = 0 : result is negative
£ = 0
M - 1
¥ D004 Misrochip Technelogy Inc. Preliminary DSALEATA puge 397

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

SUBEWFE Subtract W from f with Borrow SWAPF Swap f
SYrRaN SUmAER f {d LAl Syrilas. SWAPT 1 [a]]
Ciperarnis, G =235 Operands: Dotz 255

de 0] d r [0.1]

ac] _ ae (0]
Dperation: (1) — W) — (L) — desst Operalive. [Fe30n) o desdaT 4,
Slalug Alecled. H. oW C DC 2 [P i d) — gagtdil=
Encodng: wior | 1wda | cooc | oroor Gty Adiectod- —
Descriplion. Subilrmcl Wand lhe Carry Tag (burroe)) . .

Encoding: 4411 Lid= Tttt ittt
from reqistar 't (5 complameant ns | | | |
methed. IFd &2, the resull s atored Norcriptinn: The upper and Ioweer nibkles of regisfer
inWIFd 517, the result is stored back T are exchanged. 1T 'd ks "2, the resul
In reglater 't [detsult). is placed in W IFd" is ", the nosult is
K'a'is ', the Acorss Bank is sclected placad in ragister T (gataul).

e’k 1, the BER lg used to select the I s ", Lhe Acomes Dank iy w=lecled.
GPT bk (o fawll). IFa" 151", the BE5H 15 usad o salelt the
It & 15 "0’ and the extanded mstucion ERR bk {defaull).
sl i enabled, his insboclion cpeales It'a" 15 "0 anid e sxtanded nenichon
In Ingsxan Lisral Ofsat Sodressing et I enabled, thia Instraction operates
picde whenever = 85 [5Fh). See in Indowed | heral Cffsct Addressing
Section 28.2.3 “ByteOricmted and mode whenever T B3 (SFh). See
Bit-Orlented Instructions In Indexed Seclion 26.2.3 "Byle-Orienled and
Lileral Olfsel Mode" fur delails. E!_Il-ﬂllmtﬂd INEIrUC NG In rm:m
pro—— 1 Lileral OMsel Mode™ lor delsils.
Gycles: 1 Viards: 1
@ Cycle Activity: Cyules, 1
i [eiy =] (14 Q Cycle Aty
| Decode | Resd | Mrocess | Wire to o o v o4
regisder T Crala deslirlion D caa Read Pro Wb B
Esgnigle {2 EUEWFE REC, 1, # register 'f Mty desfinntinn
Rofare Insiraction
HEG = 18h fugyl 1001l . . .
W ook (hAnn 1101 Example HRARF O KEEA, 1, N
e = 1 Before Insfruction
After Iretruction RFG = 5lh
RES - DCh nnnn Ining Attar Instruchion
W = k| fuNuy 1101l RCG - 351
C - 1
z - D
N = D : TSl B posita
Cxurnple 2. TAMMIR RRG, O, @
Batars Instractien
RES - 1Bh aenl 18113
i = 1ah [t ninl
& = 0
Aller Imslredion
RFG = 1Bh e il
W - Dah
C -1
7 = 1 - result s Fom
M - 0
Fxample 7V AP KEXS, 1, N
Before Inatruction
RCG - O3h (nnan nall}
w = DER fuuuy 1101l
C - 1
Aficr Insirsctinon
HEG = Fih lllll.sll uLuul
. G
W = (iFh [Elzuuu |ﬂ| 1]
- = 0
z - D
] = i » rasult = mngative
DS30EITA puge 395 Preliminary & 2004 Misrochip Technulogy e

A-122

PIC18F2480/2580/4480/4580

TELRD

Table Read

TELRD Table Read [Continued)

Synlax.

Cperands:
Operation:

Status Attachan:
Cricoding.

MNescrphinn-

Words:

Cyclos:

O Cyele Aclivily.
21

TGLRD [%, *+,* , +7)
Flgne

if TRIRTI*,

[Frog kem (TBELPTR]) » TAELAT,
TGLFTR Mo Chungs,

It |BLEL ™+,

[Proyg Mem (TOLPTR)) » TAGLAT,
[TRIPTR} + 1 — TRI PTR;

If TELED -

{Preg Bem (TRI PTR)) — TARI AT:
(IELFIRI—1 — IBLPIK;

il TELRD +°,

[IELPI R+ 1 — |BLF IR,

{Frag Mem (TELPTR]) » TABLAT,

Mona

elelale] nnnn Ok O 1} 1 BT
on-o 4
-] ity
A4
=2 1

Thiss instrucfion is wsed fo mead the conbonds
of Program Memory (PR To sddress the
pragram memcry, A peiater, caliod Tahkle
Faointer (1 HLF [R), & usad.

The TOLPTR {z 21 bil poinler) puinls lo
&ach byta Imtha pragram mamorng. | BLF 1R
e = 2 Mbyle sdd e ranpe.

IBLFITERN = 9. Laast Sgnmcant Hyta ot
Prograim Memary Wond
TOLPTRE - 1. Musl Signiliczanl Gyle of
Frogram Memarny Véend
The TELED Inetructcn can modify the value
nf TRI PTR as fnllvas:
« no changs
= post-increment
« post-decremeant
= pre-increment

1
2

Qg 23 a4

Dy

Feb
apcration

Mo T M
nperation operation npration
Mo operation Ma Mo cipersfion
[Rioad Prageam | aporation ([(Wirke TARI AT)

IEmeary)

Cxammple 1. TRIEN

Bafore Inetructon
TADLAT
IBELFI K
MEMORY{DIAISEh)
Bftcr Instruction

IAELAT
TCLFTR

Eramne X LELEL

Gufore Imelruclion

IAELAI

TEBLFTR

MFRCRY (0 ADSThH)

WERMOREY (D1 83050
Aller [rrslroclion

IAELAI

TBLFTR

.

35l
AFAD
Hih

34h
QOASETh

AAn
MA3STh
1%h

34n

34n
0143530

W 2004 Misiochip Tedhnology Inc.

Preliminary

DS3053TA page 300

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

TELNT

Table Write

S MRE:
Uipcrands:
Dperatian:

Slalus Alecled.
encadng:

Deacription:

Wi,
pele -t
@ Cyde Addivily.

TBLWT { ;"0 1)
Mono

IF TELWT',

(TARI &T) — Hrlding Regisfer
IBLF K — Mo Changs;

i TOLWT+,

(1AELA 1) — Holding Reqster
(TELFTRE) 1 1 > TELPTR:

if TRIWWT-,

(TRELAT) > Holding Reglater,
(TOLFTR) 1 > TGLPTR,

It FBLW1+7,

(TOLFTR}+1 » TGLPTR.
(1AELA 1) — Holding Reqster

Muone

uuuy uuuy uguy 11mn
=3 T

-z
L
Thita Inetrnsction ueee the 3 LB of he
TRI PTR ta detocrmine: which af the
B noking reqishars he LABLAL & wiitan 0.
The holding regrslers e used Lo pragiam
e contants of Frogram Meamany (E.M.).
(Refer 1o 3ection 8.0 "Flash Program
Memory™ for addifional details mn
pragramming Flash memany.)
The: TRI FTR {a >1-hit paintar] prints tn
aach byte m the proqram mameny. [ELP IR
bras o 2 MGlye sddresys range. The LESb ol
ha IELF | K zakcis which byte of the
program memary koation to scceas.
TRI PTR(N] = o~ | cast Significant Ayt
ol Pragram kemory
Wisid
TRI PTRN] = - Most Significant Ayhe of
Fragram Mamaery Vord
The TRTET insbiuclion can medily lhe
valua af THLF TR a5 hollows:
+ no change
post-ncrament
+ puosl decremenl
» pre-neramend

[»4] [3 4

Desude M [{IY [H i
pparatnniepaaton| opsraton

Mo {1 [J [
oparation (eperabon|eparabon epsraton
[Fead [Wirfle to
TARIAT) Halding
Reglatar |

TBLWT Tabla Write {Continuwed)
Example 1: TELMT *=;
Betora Instruchon
TAELAT - I5h
TEI PTR = (0&35h
HOLLNH G RECGES | ER
(D0A255h) - FFh
After Insfruchiors (fnble write completion)
TAELAT - =5h
TGLPTR = O0A35Th
HiOl MG RFGISTFR
(DAISEN) - E5h
Fuampla 2 TEIMW O
Before Instnucton
TARI AT = b
IELFIR = EYAR
IOLOING RCGISTCR
(M SaR) = FFh
HOLLNNG HECS | ER
(01 38a0H) - [ITh
After Insfruction (iatle write comipletinn)
TABLAT - 3h
TGLPTR - 0133500
HOLLING HELS | ER
(0132940 - FFn
IOLOING RCGISTCR
(L3 = #h

DS30637A page 400

Preliminary

A-124

& 2004 Miciachip Technulogy Inc.

PIC18F2480/2580/4480/4580

TSTFS2 Test f, Skip if O HORLW Exclusive OR Literal with W
Synlax. TETTEZ 1] Synlux, KORLW &
Operamnds: 0=t 255 Qp=renda; 0=k 255
we] Operafian: (W) EOR k=W
Operation: eldp 11— 0 Status Aected: NZ
St Affected: Mere Encading: | uuny | 101U | kkkk | kkkk
Encodng: EENESEE Drescriplivn, The vonlenls ol W are KORed wilh
Lassmphon: I1'F = o, the next Insmichon teichsd thes J-Dif IABma] K. 1Re rasult 15 placed
during the current Instnuciion executhon I W
is dircarded and » now is coccuted
: Wonds: 1
I'I'IEHI'IQ thie a l'r‘-‘ﬂ-‘:-j‘ﬂ*& nebucion.
I 'a”is ", the Arcoss Rank s sclected Cyules. 1
I'a" 151, tha BSH 15 usad in selact tha Qiycke Achvity:
GPR bank [delfaull). o1 0z ni 01
5] '3.: ko and I:IIE Bﬂﬂmﬁﬂ Instnuction Decode Read Pricsss Wrtte to W
wel s enabled, lhis imslroclion operales Heral & Deslas
In Ingdesed Ligral Ofset Addrassmng
Imcde whenewver TS B85 [5F|'I:I. =1
Enction 28.2.3 “Byte-Oricnted and Ewample: EORLW ORFh
BHR-Orlented Instructiens In Indexed Eafore Instructon
Lileral QiTsel Mode” for delails. w -
. Attar Instnichon
s 1 W - 1Ah
Cycles: 1{¥

Mote: 3 cycles T slip and Tolowed
by a Fawned irestructicn

O Cycle Activity:
i oF o3 4
Dacode Read Frocees Mo
registar 'f Mata nperation
I ekdp:
o4 o o 04
051 Pl Mo [d1+]

wperalion v ralion vperakion uperalion
It 2hap and Mlkewsd by 2-ward nstruchion:

o1 o2 o3 a4

[Mo Mo Mo
agreralion vperlion vpreralion wperalion

[Moy [0 Mo

wpser alion eperlion vpreralion wperalion

r_'rl.ﬂl'll[.llu‘_‘. MERE TAaTFAR CHT,. |
1 PACec]
ZEAD
Betora Instructon
rC - Agdresa [HERE]
After Instruction
NCMNT - 0Oh
FC - Audress (TR
FCONT + Dbk
rC - Addresa (HZERS)

W 2004 Misiochip Tedhnology Inc.

Preliminary

DS3A053TA page 401

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

HORWF Exclusive OR W with
Synlan. XKORWT T [a))
Ciperands: 0=r=235
d« [01]
A= |01]
Operalion. W KO (N desl
Stabue AfMeched: M, Z
Fnocoding: IFIFIE | | milm | rrrr | rrrr |
Deacription: Excitalee 3R the contents of VWwith
remsior 'FFd s o the result is shored
In W IFd’ "1, the reawlt ks stoned beck
in Lhe regisler T {defaull)
It'a 180", the Accass Bank 15 selachad,
IMNa' 17, e O5R s used e selec] e
GHFH bank (oslaul).
M’ i 0" amd e exlenced irslhuclisn
sat 1B anahisd, this metnuchon oparatas
In Indexed LReral Offesat Addreazing
mads whenover £ 85 (5FR) Sen
Sectlon 25.2.3 “Byte-Orlented and
Bil-Drienbsd Instruclions in Indexed
Lritaral Offeat Mode"™ far datais.
Wi, 1
Cycles: 1
3 Cycle Activity
o oz Q3 24
Meonde Romd Procnss Wit fo
regleter T Diata deatinathon
Eﬁﬂtllﬂlﬂ:' XORWE REC, 1. @
Rofars Imstrisctinn
REZ - AFh
W = DB5h
Afer Instructicn
RCG - 1&h
WA = B5h
DS30EITA puge 402 Preliminary & 2004 Misrochip Technulogy e

A-126

PIC18F2480/2580/4480/4580

252 Extended Instruction Set

Im addmion 1o the standard £H mstruchons of the PEZ1E
instruction =at PIC18F2480/2580/448004580 davices
alsn provdide a&n ophonal exdension fo The oors CHL
functionality. The added faatures include sight addi-
tianal imstruchions that augment indirect and ndewsn
addressing opsrations and the implementation of
Indexed Liters| Offset Addressing mode for many of the
slardiard PICAS ineslrucliones.

Ihe addibonal teaturss ane disabled by detault o
enable them, users must sat the XINST configuration
bit.
The instructions in the sxtended ==t can all be
classihed as ifera) aoperations which sither manipulate
the File Selact Regisiers or use them for indexed
addressing. Two of the instructions, aporswr and
ZULESE, wach have an addilionsl special inslanlialion
for using FERE These wersions (ainnime and
SUGTLWE) allows Far sulormaalic velurn aller cecculion.
The extended instructions are specifically inmplemented
L waplimize: re-enlianl program gods: (hel is, code Ll
is recursive or thet uses = =oftware stack) written in
high-lewel languages, panliculashy G0 Aamong ol
things, they allow wsers working in high-lewel
languages o pedlorn oerlain opealions on dala
stnuciures more efficiently. These includs:
= dynzomic allocalion and de-allocalion ol sallware:
stzck space when entering and leeving
submculings
= function pointer invocstion
= sollwars Slack Poinlor rmanipulalion
= manipulation of varizbles located in & software
slack

A sumurary of lhe: insbuclions in e calended inslooc-
tion =&t is provided in Table 25-3. Detailed descripticns
are provided in Section 25.2.2 *Extended Instruction
Set". The apoode field descriptions in Table 25-1 apply
lo bdh Lhe slandard and cxlended PGS insbodion
EaiE.

Mote: The insbuclion scl cxlonsion and Lhe
Indexed Litersl Offeet Address=ing mode
woie: doesigned o oplimizing apgdicelione:
written in C; the user may likely newver use
lhese insliuclions dircelly in assemblor.
The syniax for these commands s pro-
witded &5 A retersnce for Users whn may he
rewiewing code that has bean genarated
by A Coimpler

2521 EXTENDED INSTRUCTION SYNTAX

Most of tha extendad instructions use indexed argu-
emts 0SImE e nf e | e SEelert [ReqIstars And Some
offest to spacify a sourca or dastination register. Whan
an argument tor an instruchon serves as part of
indezecd addressing, il B enchosed inosquane Boackels
{“[T} This is done to indicate thatthe srgument is used
ap an index o offscl MPASMM™ Sssemblon will Nuag an
error if it determines thet an index or offset value is not
brackelod.

\When the extended instruction set is ensbled, brackets
are also used looindicale indes agumenks in byle-
ariented and bit-oriented instructions. This is in eddition
lo olher charges in heir synlae For more delails, soc
Section 25.2.3.1 “Extended Instruction Syntax with
Standard PIC1E Commands™

Mote: In the psst, square brackets hawve been
wsed e denale oplional argurnenls in e
MCA% and earlier instruction sets. In this
el zored gy Bonwwennd, o plicansal arguamenils
are denated by braces (5 11

TABLE 25-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET
. 16-BIt Instruction Waord
I.Iénemnln. Description Cyclos Status
pernm:lg MEh LSk AfMected
ADDFER fk Add literal to FER 1 Lllo logd L[Lkk kkkk Mons
ADDULNE & Add litersl to FER2 and return s 1T 1wkl 11kk kkkk Mane
CALLW Call subrowline wsing WRES 2 opon Qopa 3001 0loo [
MOWSF z., Ty |Move z, (source}to 1=tword 2 T T ke wwes MHone
[y [deslinalion} 2nd wuord 1111 ftrtf £rir ftrt
MOWES I, Iy |Move z, {source)fo 1=tword s T T Twse wwes Mone
Zg [deslinalion y2nd word 1111 E¥x HEZE ZIED
PLISHL k Store literal at FSR2, 1 Lilo L10l0 kkkk hkkkk Maone
decrement | 5149
SUBFSR fk Subtract litaral from FSR 1 Lllo logl LLkk kkkk Mons
SN MK & SHbtract Ireral trom | 5182 &and 2 111n 1N 11kk kkkk Maine
returm

W 2004 Misiochip Tedhnology Inc.

Preliminary

DS3053TA page 403

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

25.2.2 EXTEMDED INSTRUCTION SET
ADDFER Add Literal to F5R
Syntax: ADLDFSH LK
Oiperanids, Dek=B3
e [DL1,2]
Ciperalion. FERh+k »TERMD
Shahus Afaciad: Miona
Ellmdilg. | [N | [ELEE | Tk kEEEE |
Lescnplon: | ha bt Iteral 'K 15 added i the
contents of the F2ZR apecified by 'T.
Whrds 1
Cycles: 1
(1 Ciycle Activity
[w] | a3 24
Mecnde | Read Froceas | Akitc tn
| Iieral ‘K Data FIR
Fxample- a9, w i
Bafare Inetriction
FRR2 = [MFFh
ATET Inatnaction
FRR2 = I

ADDULNE Add Litcral to F5R2E and Return
ST ADDULNE. K
Operands. Ouk=B3
Liparation: FSHZ + K = FERZ,
PC - [TOS)
Hatus Aftected: None
Cruuding. [voe [rann | iee | eeee |
Liascnphien: I e Ei-baf Ineral 'K’ 15 added ko the
wonlents of FERI A TRTIEY i lhen
cancuted by Inading the PG with the
TOS.
Tha instructinn fakes ten cyclos in
execute, a wor ke performed durng the
seourid cycle.
| i may b thought of 35 a spacial casa
ol lhe annFan insboclion, where 1= 3
(Bmary "117; Ik oparatas only on F5HEE.
Wirds, 1
Cyoies: s
L Gycl Actrty:
a1 oz a3 ad
Lratida Haad Frocass Wirea 10
lileral & [2TE rsR
Mo Mo Mo Mo
Operation | Operation | Operstlon | Operaton
Cuample, ARDTLHE 230
Before Instnucton
rsRz - 03rrh
[¥ = (Hooh
TOS - 024rh
Aftar Instruchion
FSR2 - HMZh
P = (AFh
TOS - TaE-1

Meoko: Al PICAE insbudions rmay lake an oplionzd Rl argumenl pregeding Ue insbeclion mnemonis B owses in
symbolic addressing. If a labal is used, the instruction syntax then becomses: {labsl} instruction argumsnts).

DS3063TA page 404

Preliminary

& 2004 Miciachip Technulogy Inc.

A-128

PIC18F2480/2580/4480/4580

CALLW Subroutine Call Using WREG MOVSEF Move Indexed to f
Synlax. CALLW Synlux, MOVED [2:] [
perands: Mona Ciparands: Dz, 2125
Operatinn: (P » 7 TOS, e By e 085
(W —= FLL, Oparaton: [FSHI + 20 =1y
(FCLATIL) » PCIL Satus Afincicd- Mone
(FCLATUY — FCU
Emcadimg:
Slalurs hMeclad, Muom r'g_
15t ward [soures) o i 1z o,
Encoding: | vy | ooon | o001 | o100 | T word [destin,j 1222 | ==z | zEzz | pterg
Nescrighion First, the: refurn address (PG +7) is Tieseriptinn The caontents of the sauncs regisicr are
pushed onto e retum stack. Next. the vt to destination ragister Ty The
cnlenls ol W ame waillen le PCL, L actiml ardress of fhe sounce mgsder is
EHIZING vaIUS |5 AiEcared. |han, the . o P
datermned by addng he /-t ikaral
'I'MHE_' o1 PCLATH and PCLATU are alle] "z in b T wenwd Lo Lhe vlue of
latched infn PLH and PECL, FSHZ [Na andress of tha destinanon
respectively. The 2econd cycle le regiter k apeclied by the 12-Bit Iteral
execuled wxa NP inslroclivo while D % in the socand ward Bath addmrses
RIS NEXL INSAIELAN 12 12ished. can be anywhere In the 4096-byte dets
Unliee 2o lhere s ne oplion o space (000N lo FTTh).
updata W, SIS ar S5 I v metnuchon cannet usa the
Warids, i PCL, TOSU, TOSIH or TOSL w e
ycies: 2 Aasinatnn reqishar.
.. I the regullan] sowee address painks o
0 Cycle: Activity an indireot addressing registor, tho
= s @3 o walle returmed will be 00h.
Mncods Read Pu=h PG ta M WWords:)
WHEL Hack pparaton
B ™ Mo Mo Cyes. z
DpErEton oparahon | operahon | oparabion A Gyche Aty
a1 a2 a5 O
Dacoda Latarming Lsabarmins Head
Brapz HERZ ThRLLE source sddr | svurce sddr | somcse ey
Refrm: Insfrucfinn Lecods Mo Ha W
rc - address (BERE) opergtion | operstion | register T
PCLATII = 10h pe pe gﬂp,ﬂ
FULAIL = 0Oh Har dusmmy L
W - 06h read
After Instructian
P = O0ER
TOS — address [ORRE 4 2 C . Myar BER], RRO:
PCIATH = 10h arple SHERL
PCLAILD = Gah Batore Insmichon
W] renz = Edh
Gontonts
of 3Zh - Z3h
REG2 - 1th
Aftar Instnicthon
F2R2 - &h
Crntors
o1 Hh = &Eh
REZ2 - Z3h

W 2004 Misiochip Tedhnology Inc.

Preliminary

DS3053TA page 405

APPENDIX H:

DATA SHEETS

PIC18F2480/2580/4480/4580

MOVSS Move Indexed to Indexed PUSHL Store Literal at FSR2, Decrement FSR2
Syl MOVSS [, [ea] Symilax, PUSIIL k
perands. Uzze =14/ Dpsrands: LN .
0127 Oparatinn- & — [FRR3),
Ciparabon: iFSHEE) + ZH_'I —= IF5KE2) "’I;J:l FESHD = 1= F5HZ
Slaluys Alecled, Mo Siatus Aferied: Mane
Eneanng: Encading: | 1111 | 1aL1d | kkkk | [.44 |
Tl word {suunse] [NNR- [} RRR RRRE, L - ———
Il word idest | 1111 — o Mnmcripticn The: fi-kit feml 'K is written fa the doda
memony addnees spected by FSR2 FERT I
Descriplion The conlenls of lhe swurce regisler g decremanded by 1 afier tho apormtion
moved i the dasimation regster. |he This Ingtnuction elowe Ugera to puah values
addresses ol e seurce and deslinalion anlo = sollware skeck
registors are determined by adding the ’
T-bit IMetal offsets 2, or ‘24, Wikards: 1
resprctienly, to fhe valie of FSR? Bath Cycles:]
req@siars can be locatad anywhers n .
Line 4058 byle dals memory spece Q2 Cycle ACINY:
{0000 to FFFRD.) 0] O
Thie porras irslroslion cannol wse lhe Do Read 'K Frocess Wite to
PO, TOSL, TOSH ar TSl as the data desfinntinn
destination regleter.
I the resultnnt souree: nddrass painds b
an Indirect addressing regleter, the Exampis: glUsdL oEh
walue relarmed will be 300 17 lhe Gelure Inshiuclion
rasukant deshnation address punts to FaREHFSHZL = MELZR
an indirec addiessing regisler, e Memary {01ECh) - 0ok
inshruction will cyonute s o R [——
|- e dalpl
dord: 2 rSR2ILMSRIL - 0ICoh
GyEE: o Memary (01FGh) = ih
@ Cyde Aclivily.
al g R L4
Ducode Delennmine | Delbsrmine [l
SOUNTE Addr | SoUncs addr | EoUrca redq
Duuode Delennine | Del=rmine Wilile:
dost ueddr destpddr | o dostreg
Examele; | ALE S Tuskl, Tualhl
Rofare Insiraction
FSH2 = E0h
Cunlents
af I&h = Xih
Contents
ul Edh - 1ih
Afier Instrisction
F3R2 - {0h
Canlents
af Euh = #3h
Caortenta
wl E3h - 35h
DS3LEITA puge 408 Preliminary & 2004 Misrochip Technulogy e

A-130

PIC18F2480/2580/4480/4580

SUBFSR Subtract Literal from F5R SUBULNK Subtrsct Literal from FSR2 and Return
Synlax. SUBTSR Ik Synlux, SUDULNE k
Cperands: 0z Kzl Dparands: OzkzBs
fo[41.2] Operalion. rskz & »MSR2
Cporatinns F&Rf -k = FSRF (TR = PG
Statia Affectad: Mo Setus Affected: Mone
Fncoding: | rn | 1411 1 | TR | Ekkk | Fricading | o | 141411 11EE el
Description: The G-bit Beral ‘& | subtracted from Deecrplion: The E-bit Ieral 'k ks euttracted from the
the condents of the FSR spocificd confeats af the FERY A wicroen is then
by T executed by loading the S with the TOE.
Winrds 1 The nsfructinn fakas twn cycles fn oaocuto;
Cyclea: 1 & WUZ 15 partrmed Junng the second cyck.
(} Cycle Activity- This miay be loughl ol ey @ specil case ol
e 5UEFEE INsTuchen, whars =3 (nary
1 b2 b2 ja'll '}, il uperabes only on FCSR2.
Mncoda Read Procoss ik i o 1
reqleter T Data | destination =
Cyules. 2z
2 Cycla Achaty:
Caample. SIMFAR 2, 23R o1 oz as 04
Bators Instructan Lecoda (EEL] Frocess wiite o
FoR2 - G3FFh regisler T Drala deslinalion
After Instructian Mo Mo Mo MO
F3RZ - O3DCh Operstion | Operstion | Operstion | Operstion
Cxanple. STIIRITHE. 23h
Eabore Insmichon
Fenz 03rTh
[= 0100n
Aller Insboaction
FER> = OANCH
rc - (TOE)

W 2004 Misiochip Tedhnology Inc.

Preliminary

DS30E3TA page 407

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

25.2.3 EYTE-CRIENTED AMND
BIT-ORIENTED INSTRUCTIONS IM
IMDEXED LITERAL OFFSET MODE

Miote: I nabling the FICTE mstruehion set
axtansion may cause legacy applications
to B=have ematically of tail entirely

In addition to eight new commands in the extended =et,
coabling lhe cxlonded insbuclion sel also cnablos
Indexed Literal Cffzet Addres=ing mode [Section 5.6.1
“Indexcd Addressing with Litcral Offsct™). This has
a significant impact on theway that many commands of
the standard PICTE mstruchan set are interprated

When the extended =&t is dizsbled, sddrezs=s embed-
ded in opeodes are bealed as lileoal memory kocilions.
sither as a location in the Accsss Bank (a = 0}, orina
[bank deagnated by the 11812 [a — 1) When the
extended instruction ==t is enabled and a = 0. howswer,
A fle reqister argumeant of 51 h or ks 15 nterprated &=
an offsst from the pointer valus in FERZ and not as a
Iteral address 1 or prachcal pumposes, His means that
all imshiuclions hal wse he Access RAM Bl as wan
argument — that is, all byte-oriented and bit-oriented
inslruc U, ar alimwsl hadl of e core PGS inslooclons
— may behawve differently when the extended instruction
sl is crakdod.

When the content of FSR2 is 00h, the boundaries of the
Ao RAM me cwsenlially rermapped Lo teir onginal
wvalues. This may be useful in cresting backward
cornpalible code. 1T Uhis lechnigue B used, il may be
necessary to save the value of FER2 and restore it
when moang back and forth behwssn U and asseminhy
routings in ordar to presarya the Stack Pointer. Ussrs
must also keep n mind the syntay requiramsnts of the
sxtendsd insfruction =st (ses Section 25.2.3.1
“Extended Instructlon Syntax with Standard PIC13
Commands™).

Although the Indexed | teral Ofset Addressing mode
can be wary useful for dmamic stack and pointar
mAmEUkAtnn, F can @se be very Snnoying & simple
arithmestic operation s camesd out on tha wrong
regicter. Uzers whao are accustomed to the MPIC1E
poaggrarnening sl keeg inoomind Uesl, owhen lhe
extended instruction set i= ensbled, register addreszes
ol SFh or less aoe used Ton Indesed Lileral Ol
Addressing.

Ruproscnlalive cozumpbes of Wypical Byle-orenled and
bit-oriented instructions in the Indexed Liters| Oifset
Aaddicssing rmode are provided on U Tollowing page o
show how execution is affected. The operand
condilivies shown in lhe cxarmples are applicablo ool
instructions of thess typas.

25231 Extended Instruction Symtax with
Handard PIC1E Commands

VWhen the axtended instruction sat is enabled, the file
redqister angument, 't in the standsnd byte onsnbed and
bit-orisnted commands is replaced with the literal oifset
walue, 'k As slready noted, this oceurs only when F s
b Lhan wor cgual Lo 3Fh, When an alfsel vl is ased,
it must be indicated by square brackets ([As with
Lz eeleended insbooclions, e wse of Brackels indicalos
to the compiler that the value is to be interpreted &= an
index or an offsel. Omilling he brackeks, o using 2
valua greatar than SFh within bracksts, will ganarate an
BITOF 11N The BMENSM ™ Assambler

If the index argument is properly bracketed for Indexed
Lilezraal OMlsel Addressing, Lhe Access RAM aigurnenl is
nevar spacified; it will autematically be assumsd o be
T IR O eontrast to standand agperatinn (eatended
instruction set disabled) when '3’ is 58t on the basis of
the target address Declanng the Aocess 19AM bron
this mods will aleo gensrate an emor in the MPASM
Aasemmbikar

The dastination argument, 'd’. funclions as befors,

I Lhe labzsl wersions of e MPASM emsscimibles,
language support for the sxtended instruction set must
he explchty mnoked This 15 gane With ether the
command ling option, /v, or the PE directive in tha
S0 ISt

2524 CONSIDERATIONS WHEN
EMABLIMG THE EXTENDED
INSTRUCTION SET

It is impeortant o note that the sxdensions to the instruc-
hiem et ey not e eneficel oAl users In pamoukr,
usars who are not writing cods that uses a sofwars
stack may not benefit from using the extensions to the
inslruslion sel

Addmomaly, the Indexed | feral Ofset Addressmng
mode may coreats issuss with legacy applications
witten to the TIC1E assembler. This iz becsuze
inslruslions in lhe legawy gode may 2llempl o sddress
registers in the Access Bank below SFh. Since theze
addressses me inleiproelod as llessl offscls lo FSRZ
when the instruction set extension iz enabled, the
applicalion may oad or wile e Lhe wiong dala
addresses.

Wihen poaling an appdicalion lo the PICT8F248002 5600
AABOMEED, 1t is very important o consider the type of
code. A large, te-colranl application thal is wilben in G
and would bansfit from sfficient comgilation will do well
Wwhen Using the insmichon set avtensions | egacy
applications that haavily usa the Accass Bank will most
lksty ot Benaft mom usimg e Sxtended nstrichon
==t

DS30637A page 408

Preliminary

& 2004 Miciachip Technulogy Inc.

A-132

PIC18F2480/2580/4480/4580

ADDVE ADD W to Indexed BSF Bit Set Indexed
{Indexed Literal Offsct mode) (Indexcd Literal Offsct mode)
Syntax: ALLWE k] Synias: BEE KL B
Oy i s, Dok os Operarnds. Gur<os
de 0] LB
8- 1 a-0
Cperaten: W+ FSHEE) + Ky — diest Dparation: 1 = {iFSHE + Kb
Slabus Alfeclesd. W, OV, &, DG Z Shatlus Allecled. M
encoang: | ocoro | ende | k| ms | Encading: | zooo | mhbo | miok | w |
Mesariphinn The cantenks af Ware added o the confongs Miereriptinn Rit ‘B’ af tha registor indicatad by FER2,
o1 the ramstkar ndicatad By FSH2, oftsat by tha ofizat by tha valua K 15 sat.
walus R Winrde 1
IF "o 15 °0°, e naELt 5 stored incowe IFd st .
L rissull s suermel brach in segishess T fubeesull). Cycles: 1
T i 3 Gyl Achviky
Cyehes, i @1 oz 03 Q4
Deade Fiaad Frocess Wirmte ta
Q0 Cycle ATV reglater ' Dt destination
o vy [on] 4
Deecoge Read & FProcess Wilrtte to Example:; EZF JFLRZ QFET], 7
Dl ceudinaliva Befare Instructinn
FLaL OFS] = (3h
Cooatrnipile. ATITR LOFET] 0 FsRz = OADdh
Gnntonts
Hamr:;.llnstru':mn o of 0A0AR = uh
IR s e
FaR2 = DAL of DADAR _ g
Contents
af MAAGh = 2k
Amar Instructien
W 3
Candenbs
at RN = 2h
SETF St Indexed
{Indexed Literal Offeet mode)
Synlux, ECTT [K]
Oparands: O is
Clporation FFh — {({(F5RF) + k)
Status Aflected: Mane
Fricading | oiio | i LRER ®RRR
Deuzipliun. The cenlenls wllbe regisler indicaled by
F&R> affscf by 'k’ are =ot fn FFR
Wi 1
Uyclas 1
Q Cyole Aclivily.
=y 12 K] (14
MNennde Rond ¥ Procnss \hriee
[RERE] rafqishar
Example; LY [[ETY N
Brfiore: Inshruction
FE] = Zih
FERZ - DabIh
Gontonts
of DAZLh = h
fuller Irrskouclion
Gnntonts
of DAZCh = Fkh

W 2004 Misiochip Tedhnology Inc.

Preliminary

DS30E3TA page 400

APPENDIX H: DATA SHEETS

PIC18F2480/2580/4480/4580

25.2.5 SPECIAL COMSIDERATIOME WITH
MICROCHIP MPLABS IDE TOOLS

The latest varsions of Microchip's softwara tools hawve
been designed fo iy support the sstended msinuchon
sat of the PIC13F2480/25800/448004580 family of
devices Thes meludes the MET AL C18 O compiler,
MPASM ssssmbly languags and MPLAB Integrated
Development Enviranmeant [IDE).

When salecting a targst device for softwars develop-
ment, MDA D will artemancally set detault conhg
uration bits for that device. The dafault setiing for the
XIMET configurstion bit iz ', disabling the extended
imsbruclion el and Indeged Lilersd OfTsel Addrossing
made. For proper execution of applications developed
lo lake adwvanlage of lhe olended insbodion sel,
XIMNST must be set during pregramrning.

T ahevlop solware For Uhe cxlended insbiuclion scl,

the user must enable support for the instructions and

Lvez bvdezogeed Aaddrcassing mgede in Uhweir lzenguage: Loolis),

Ceepending on the environment being used, this may be

dorne in seveial ways,

= A menu option, or dialog bax within the
crvircameenl, el alloves lhe wser ooconfigure U
language tocl &nd its settings for the project

= A commeend ling oplion

= A directive in the source code

These options wvary betwesn different compilers,
gzsemblers and development environments. Users are
crcoursgod iy the documenlalion accompsany-
ing their dewveloprment systems for the appropriste
infarrnzalian.

DS3063TA page 410

Preliminary

& 2004 Miciachip Technulogy Inc.

A-134

	PIC18 - 1st Edition - Appendices.pdf
	PIC18 - 1st Edition - Appendix B.pdf
	PIC18 - 1st Edition - Appendix C.pdf
	PIC18 - 1st Edition - Appendix D-H.pdf
	PIC18 - 1st Edition - Datasheets.pdf

